
Reconstructing design thinking and learning through code
snapshots and clinical interviews

Authors Blinded For
Review

ABSTRACT

CCS Concepts
¥Social and professional topics ! Computing educa-
tion;

Keywords
ACM proceedings; LATEX; text tagging

1. INTRODUCTION
A growing trend in computer science education research

is the collection and analysis of code snapshot dataÐrecords
of the state of and changes to studentsÕ code as they de-
velop it [5, 10, 13]. Though speciÞc implementations di!er,
the general strategy in such projects is that a student event
(typically compiling code or saving a Þle) triggers a proce-
dure that creates a record containing the entire content of all
of a studentÕs relevant Þles, as well as associated metadata
(time of save/compilation, for example, and any compiler er-
rors that may have been generated). Mining data from such
snapshotting systems has led to large-scale documentation
of common student errors [13], the development of compile-
time detectors to catch common student errors [14], and the
proposal of formative assessment models to predict student
success [5, 15]. Building on existing momentum, some re-
searchers are actively pushing for a continued scale-up of
how we collect code snapshot data. One current proposal
even calls for creating an international database by collect-
ing snapshot data from thousands of introductory program-
ming students worldwide [6].

WhatÕs common to these threads of research is how they
mine the data. In most applications of code snapshot1 re-
search, the aim is to average across events and sessions to

1What I call Òcode snapshotÓ research may be more for-
mally called Òonline protocolÓ research [5, 10]. ÒOnlineÓ here
isnÕt mean to mean the sense of globally-connected com-
puters, but rather that student materials are collected in a
minimally-intrusive way while students work.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for proÞt or commercial advantage and that copies bear this notice and the full cita-
tion on the Þrst page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior speciÞc permission
and/or a fee. Request permissions from permissions@acm.org.

ICER 2016 Melbourne, Australia
c! 2016 ACM. ISBN 123-4567-24-567/08/06. . . $15.00

DOI: 10.475/123_4

arrive at a characteristic measure of a studentÕs behavior.
Jadud [5], for example, develops the idea of a studentÕs ÒEr-
ror Quotient,Ó a measure of how e!ectively a student ad-
dresses compile-time errors in their code.2 Rodrigo and col-
leagues extend the idea of error quotient and introduce sim-
ilar measures such as studentsÕ Òcompilation proÞlesÓ [10],
Òfrustration proÞlesÓ [9], and Òerror proÞlesÓ [15]. Because
these measures can be collected in real-time as students
code, they o!er the potential to identify at-risk students
and respond with early interventions.

But, for all the data these methods collect their focus is
primarily what Jadud [5] calls studentsÕ ÒsyntacticÓ strug-
gles: the challenge of articulating well-formed statements
a compiler can properly parse. This focus on syntax-level
struggles leads to both a methodological and theoretical
trade-o!: we can see in detail how students struggle with
wording, but we see less of how they struggle with the mean-
ing and intent of their code. Syntactical analyses necessarily
ignore the speciÞccontent of studentsÕ code because they ab-
stract meta-information about the event: error type, error
location, frequency of error.

As an analogy, suppose that instead of studying computer
science students we were studying screenwriting students.
Further suppose we have a system to track data whenever
students save their screenplays and scripts. For each save,
we get a copy of the entire script at that time. We can also
run an automated analysis to check whether theyÕve prop-
erly formatted slug lines 3, put character names in all-capital
letters, properly numbered scenes, etc. We might even know
where students are when they write (co!ee shop, library,
home, etc.). If we mine that data, we could learn something
about studentsÕscreenwriting behavior, but only at the level
of how they struggle with screenwriting syntax. Using only
error-based data itÕs much harder to answer questions such
as:

¥ How does this student construct a scene or handle di-
alog in their script?

¥ Does the student seem to have a grasp of pacing, story
beats, and e"cient exposition?

¥ How does their writing manage and develop character

2A useful way of thinking about JadudÕs [5] error quotient is
that the computation believes in second chances. It doesnÕt
penalize students for making errors; it penalizes students if
they donÕt Þx a given error before compiling the same piece
of code again.
3In a screenplay, a slug line gives information about where
and when a scene takes place. For example: INT. FORTRESS
OF SOLITUDE - DAY.

10.475/123_4

arcs?

We also still canÕt answer fundamental questions about
the context of studentsÕ writing processes:

¥ Do they use particular techniques to Òbreak storyÓ and
decompose a narrative into its key beats (index cards?
Whiteboard?)

¥ Do they participate in a writing group?
¥ How do they respond to people giving them notes on

revising a script?

To sum up, because snapshot systems are designed to col-
lect the totality of a codebase at frequent intervals, they o!er
a rich record of data that captures the resultsÑboth major
and minorÑof studentsÕ design decisions. But, computing
education research that uses code-snapshotting has focused
much more on detecting, classifying, and predicting stu-
dent errors than it has on showing how students progress in
programming and design expertise. Nevertheless, snapshot-
based research shows tremendous promise. Given that :

1. Snapshotting studentsÕ code represents a cutting-edge
way to resolve the way codeÑas a design artifactÑ
evolves over time, but

2. Code snapshots, as theyÕre currently used, explore nei-
ther the totality of a studentÕs design nor the rich con-
text of that designÕs production, and

3. There is a lack of parity between studies of how pro-
fessionals design software and studies of how students
do so,

It seems sensible to ask: can code snapshots be usedÑ
possibly in synthesis with ethnographically-oriented methodsÑ
to start studying how studentsÕ design thinking plays a role
in their introductory programming work? We believe the
answer is yes.

In what follows, we present work that proceeds from an
empirical challenge: how can we develop accounts of stu-
dentsÕ programming activity that explain the form and evo-
lution of their code on a design project? We o!er an ac-
count of one studentÑRebeccaÑand her experiences and
code from a second-semester course on programming con-
cepts for engineers. Using data from both code snapshots
and clinical interviews, we explicate both the challenges of
studying studentsÕ software design processes and the poten-
tial for such study to inform accounts of teaching and learn-
ing.

2. CONTEXT AND METHODS

2.1 Context of the study
The data presented in this case are taken from an ongoing

IRB-approved study of undergraduate electrical engineering
majors undertaken at Flagship State, a large, public research
institution on the east coast. For two semesters, I have fol-
lowed a total of 10 students taking ÒIntermediate Program-
ming Concepts for Engineers.Ó It is the second of a required
two-semester course sequence in programming.4 Students
can (and some do) place out of Basic Programming via AP
Computer Science credit, but all Electrical and Computer
Engineering students must take Intermediate Programming.
4Hereafter, I useÒIntermediate ProgrammingÓto refer to the
second course and ÒBasic ProgrammingÓ to refer to the Þrst.

Intermediate Programming has two 75-minute lectures per
week and a weekly discussion section led by an undergradu-
ate Teaching Assistant (TA). Typical enrollment is between
60 and 80 students per semester. Like Basic Programming,
Intermediate Programming is taught using the C program-
ming language, and it incorporates multi-week projects in
C as part of its assessment structure. Students must work
individually on four projects over the course of the semester,
which together comprise 45% of their Þnal course grade.

Grading projects involves running studentsÕ compiled code
against automated tests that determine whether a student
programÕs output matches the instructorÕs canonical out-
put. If a studentÕs program completely matches the canon-
ical output, the student receives at least a 90% grade on
a project. The remaining 10% are discretionarily allocated
ÒstyleÓ points, awarded for things like proper formatting,
code commenting, and functional decomposition (Field Notes).

This study centers on ÒFlights Database,Ó the second of
four projects assigned to Intermediate Programming stu-
dents during the spring 2012 semester. Students were asked
to build a text menu-based program that would let users
query information about airports and plan non-stop and
one-stop ßights between airports. For this project, the in-
structor gave students three separate text Þles as source ma-
terial. The airports Þle contained names of airports and
their three-letter abbreviation codes; the routes Þle con-
tained 3-tuples of two airport codes and the route number
of a ßight ßying between them; the ßights Þle contained a
list of speciÞc ßight information (including arrival and de-
parture times) by route number. Crucially, in order to be
able to respond to user queries students would need to build
a program that could coordinate information across all three
Þles to return an answer.

My analysis details the work of Rebecca, a female Þrst-
year electrical engineering major. I focus speciÞcally on Re-
beccaÕs code for Þnding Òone-stopÓ ßights, which the instruc-
tor deÞned as Òall pairs of ßights that route the user between
the departure and arrival airports with exactly 1 stop (i.e.,
a one-connection ßight)Ó (Flights Database handout, 2012).
The one-stop problem is particularly challenging. To solve
it successfully studentsÕ code must accept a userÕs choice of
airports and day, then stitch together routes that involve two
separate ßights in a way that passes stringent constraints for
acceptable layover times.

2.2 Methods
This study proceeds from an empirical challenge: how can

we develop accounts of studentsÕ programming activity that
explain the form and evolution of their code on a design
project? The focused form of that challenge for this study is
Òhow can we understand the unconventional design choices
embedded in RebeccaÕs one-stop ßight code?Ó To answer
that question, my study draws from three data streams:
ethnographic observation, clinical interviewing, and code
snapshot analysis.

For two semesters, I ethnographically embedded myself in
the same instructorÕs section of Intermediate Programming.
My aim throughout was to see what students see in terms
of course material, assignment directives, and instruction.
In fall 2011 I observed approximately 50% of the course lec-
tures. I also independently completed all class homeworks
and three out of the four course projects to more fully under-
stand the courseÕs assessments. In spring 2012 I continued

attending lectures, though less frequently, and began attend-
ing select TA-led discussion sections. During both lectures
and discussion sections I took Þeld notes while recording
ambient audio using a LiveScribe Pulse pen.

Rebecca was one of four students (three female, one male)
willing and able to participate in a series of 1-hour outside-
of-class clinical interviews during the spring 2012 semester.5

I interviewed Rebecca Þve times, and in typical interviews
I split time between asking about her experiences in the
course and giving her time in the interview to work on her
project code. During each interview, I simultaneously used:

1. A Kodak Zi8 camera for video-recording our interac-
tions

2. A LiveScribe Pulse pen to capture RebeccaÕs on-paper
penstrokes

3. A MacBook Pro (early 2011) with screen-recording
software to capture everything on-screen while Rebecca
programmed

The Þnal component of data gathering is modeled after
JadudÕs (2006) system for capturing studentsÕ code. My
colleagues and I developed software, built around the open-
source version control system called Git, that e!ectively
creates an entire copy of a studentÕs codeÑwhat we call
ÒsnapshotsÓÑevery time students invoke the compiler on
their code. Our software then sends those snapshots to a
secure, researcher-accessible server in real-time as theyÕre
created. Consequently, I could plan each interview with Re-
becca around up-to-the-minute knowledge of her workÑin
some cases work she had completed just hours before the
interviewÑand tailor my interview questions to emerging
patterns in her code. In total, RebeccaÕs work resulted in
958 compilation snapshots over the course of the semester.

3. ANALYZING ONLY THE CODE REBECCA
TURNED IN

In this phase of analysis, I restrict data to only the Þnal
version of one_stop_flight.c Rebecca submitted as part
of her project. This restriction is important because of the
data that gets left out. WeÕre forced to see RebeccaÕs de-
sign work the way her instructor did when he graded it:
as a Þnal product. The submitted code contains littleÑif
anyÑevidence of design iteration. And, we have almost no
access to streams of activity (inscriptional, gestural, verbal,
and otherwise material) that would help us understand Re-
beccaÕs early stage design [8]. Indeed, other than the code
itself, the only artifacts that actually carry RebeccaÕs voice
in this phase of analysis are the comments she places in her
code. Put another way: restricting our scope to just codeÑ
and only the Þnal submitted code at thatÑdenies the an-
alyst access to the channels of Òtalk, embodied action, and
inscriptionÓ involved in design work [3, p. 179].

3.1 RebeccaÕs Þle-scanning solution is hard to
read and has high time-complexity

5In total, roughly 30 students responded to my initial in-
class solicitation to be contacted by email about my study.
Of the students I emailed, approximately 8 students re-
sponded to my emails to schedule interview times. Of those
8, only four students were able to successfully Þnd interview
time slots that Þt our respective schedules.

RebeccaÕs One-Stop Flight Code

//"Rebecca Wells"
//1 stop flight function

#include <stdio.h>
#include <string.h>
//#include "airports.h"

int one_stop_flight(int choice)
{

int route_id, id, input, flight_number, d_hour, d_mins, a_hour, a_mins, d_hour_stop, d_mins_stop, a_hour_stop, a_mins_stop, z, layover, b;
char departure_input[4], arrival_input[4], stop_code[4], days[7], departure_city[50], arrival_city[50], stop_city[50], arrival_time[7], departure_time[7], a_letter, d_letter, travel_days[10], airport_code[4], city[50], arrival_airport[4], departure_airport[4], a_letter_stop, d_letter_stop;
FILE *airports, *flights, *routes;

printf("Enter departure and arrival airport codes: ");
scanf("%s %s", departure_input, arrival_input);
flights = fopen("flights.txt" , "r");
airports = fopen("airports.txt" , "r");
routes = fopen("routes.txt" , "r");

while (fscanf(airports, "%s %50[\̂n]" , airport_code, city) != EOF) //scan for the departure code but not to the arrival code
{

if (airport_code != departure_input || airport_code != arrival_input)
{

while (fscanf(routes, "%d. %s %s", &route_id, departure_airport, arrival_airport) != EOF) //finds the name of the city of the departure airport
{

if (departure_input[0]==departure_airport[0] && departure_input[1]==departure_airport[1] && departure_input[2]==departure_airport[2])
{

if (arrival_airport[0] != arrival_input[0] || arrival_airport[1] != arrival_input[1] || arrival_airport[2] != arrival_input[2])
{

strcpy(stop_code, arrival_airport);
rewind(routes);
departure_airport[0]= ! ! ;
departure_airport[1]= ! ! ;
departure_airport[2]= ! ! ;
arrival_airport[0]= ! ! ;
arrival_airport[1]= ! ! ;
arrival_airport[2]= ! ! ;
while (fscanf(routes, "%d. %s %s", &route_id, departure_airport, arrival_airport) != EOF) //now searches for the place where the stop is the

{ //depart airport and the arrival input is correct
if (stop_code[0]==departure_airport[0] && stop_code[1]==departure_airport[1] && stop_code[2]==departure_airport[2] && arrival_input[0]==arrival_airport[0] && arrival_input[1]==arrival_airport[1] && arrival_input[2]==arrival_airport[2])

{
id=route_id;
printf("Enter a day of the week (1-7, or 0 for all days):");
scanf("%d", &input);

//now depending on the day entered, program is suppose to run through each option that was entered, find where the id is similar, then
//check the days, finally check the time that is involved in the stop to make sure the layover is the correct time
//end with printing out the message if you find a suitable one stop flight

if (input== 1)
{

while (fscanf(flights, "%d %d %d:%d%c %d:%d%c %s", flight_number, route_id, d_hour, d_mins, d_letter, a_hour, a_mins, a_letter, days) != EOF)
{

if (id==route_id)
{

while (z< 7)
{

if (days[z]== 1)
{

//if(check_days() == TRUE)
{

// check_time();
if (layover >= 60 && layover <= 120)

{
printf("Flight %d (%s) \n %d:%d%c.m. %s (%s)\n %d:%d%c.m. %s (%s)\n " , flight_number, travel_days, d_hour, d_mins, d_letter, departure_city, departure_input, a_hour_stop, a_mins_stop, a_letter_stop, stop_city, stop_code);
printf("Flight %d (%s) \n %d:%d.m. %s, %s (%s)\n %d:%d%c.m. %s (%s)\n " , flight_number, (days), d_hour_stop, d_mins_stop, d_letter_stop, stop_city, stop_code, a_hour, a_mins, a_letter, arrival_city, arrival_input);

}
}

}
}

}
}

}

//if day entered is 2

if (input== 2)
{

while (fscanf(flights, "%d %d %d:%d%c %d:%d%c %s", flight_number, route_id, d_hour, d_mins, d_letter, a_hour, a_mins, a_letter, days) != EOF)
{

if (id==route_id)
{

while (z< 7)
{

if (days[z]== 2)
{
// if(check_days() == TRUE)

{
//check_time();
if (layover >= 60 && layover <= 120)

{
printf("Flight %d (%s) \n %d:%d%c.m. %s (%s)\n %d:%d%c.m. %s (%s)\n " , flight_number, travel_days, d_hour, d_mins, d_letter, departure_city, departure_input, a_hour_stop, a_mins_stop, a_letter_stop, stop_city, stop_code);
printf("Flight %d (%s) \n %d:%d%c.m. %s (%s)\n %d:%d%c.m. %s (%s)\n " , flight_number, (days), d_hour_stop, d_mins_stop, d_letter_stop, stop_city, stop_code, a_hour, a_mins, a_letter, arrival_city, arrival_input);

}
}

}
}

}
}

}

//if day entered is 3

if (input== 3)
{

while (fscanf(flights, "%d %d %d:%d%c %d:%d%c %s", flight_number, route_id, d_hour, d_mins, d_letter, a_hour, a_mins, a_letter, days) != EOF)
{

if (id==route_id)
{

while (z< 7)
{

if (days[z]== 3)
{

//if(check_days() == TRUE)
{

//check_time();
if (layover >= 60 && layover <= 120)

{
printf("Flight %d (%s) \n %d:%d%c.m. %s (%s)\n %d:%d%c.m. %s (%s)\n " , flight_number, travel_days, d_hour, d_mins, d_letter, departure_city, departure_input, a_hour_stop, a_mins_stop, a_letter_stop, stop_city, stop_code);
printf("Flight %d (%s) \n %d:%d%c.m. %s (%s)\n %d:%d%c.m. %s (%s)\n " , flight_number, travel_days, d_hour_stop, d_mins_stop, d_letter_stop, stop_city, stop_code, a_hour, a_mins, a_letter, arrival_city, arrival_input);

}
}

}
}

}
}

}

//if day entered is 4

if (input== 4)
{

while (fscanf(flights, "%d %d %d:%d%c %d:%d%c %s", flight_number, route_id, d_hour, d_mins, d_letter, a_hour, a_mins, a_letter, days) != EOF)
{

if (id==route_id)
{

while (z< 7)
{

if (days[z]== 4)
{
// if(check_days() == TRUE)

{
//check_time();
if (layover >= 60 && layover <= 120)

{
printf("Flight %d (%s) \n %d:%d%c.m. %s (%s)\n %d:%d%c.m. %s (%s)\n " , flight_number, travel_days, d_hour, d_mins, d_letter, departure_city, departure_input, a_hour_stop, a_mins_stop, a_letter_stop, stop_city, stop_code);
printf("Flight %d (%s) \n %d:%d%c.m. %s (%s)\n %d:%d%c.m. %s (%s)\n " , flight_number, travel_days, d_hour_stop, d_mins_stop, d_letter_stop, stop_city, stop_code, a_hour, a_mins, a_letter, arrival_city, arrival_input);

}
}

}
}

}
}

}

//if day entered is 5

if (input== 5)
{

while (fscanf(flights, "%d %d %d:%d%c %d:%d%c %s", flight_number, route_id, d_hour, d_mins, d_letter, a_hour, a_mins, a_letter, days) != EOF)
{

if (id==route_id)
{

while (z< 7)
{

if (days[z]== 5)
{
// if(check_days() == TRUE)

{
//check_time();
if (layover >= 60 && layover <= 120)

{
printf("Flight %d (%s) \n %d:%d%c.m. %s (%s)\n %d:%d%c.m. %s (%s)\n " , flight_number, travel_days, d_hour, d_mins, d_letter, departure_city, departure_input, a_hour_stop, a_mins_stop, a_letter_stop, stop_city, stop_code);
printf("Flight %d (%s) \n %d:%d%c.m. %s (%s)\n %d:%d%c.m. %s (%s)\n " , flight_number, travel_days, d_hour_stop, d_mins_stop, d_letter_stop, stop_city, stop_code, a_hour, a_mins, a_letter, arrival_city, arrival_input);

}
}

}
}

}
}

}

//if day entered is 6

if (input== 6)
{

while (fscanf(flights, "%d %d %d:%d%c %d:%d%c %s", flight_number, route_id, d_hour, d_mins, a_hour, a_mins, a_letter, days) != EOF)
{

if (id==route_id)
{

while (z< 7)
{

if (days[z]== 6)
{
// if(check_days() == TRUE)

{
//check_time();
if (layover >= 60 && layover <= 120)

{
printf("Flight %d (%s) \n %d:%d%c.m. %s (%s)\n %d:%d%c.m. %s (%s)\n " , flight_number, travel_days, d_hour, d_mins, d_letter, departure_city, departure_input, a_hour_stop, a_mins_stop, a_letter_stop, stop_city, stop_code);
printf("Flight %d (%s) \n %d:%d%c.m. %s (%s)\n %d:%d%c.m. %s (%s)\n " , flight_number, travel_days, d_hour_stop, d_mins_stop, d_letter_stop, stop_city, stop_code, a_hour, a_mins, a_letter, arrival_city, arrival_input);

}
}

}
}

}
}

}

//if day entered is 7

if (input== 7)
{

while (fscanf(flights, "%d %d %d:%d%c %d:%d%c %s", flight_number, route_id, d_hour, d_mins, d_letter, a_hour, a_mins, a_letter, days) != EOF)
{

if (id==route_id)
{

while (z< 7)
{

if (days[z]== 7)
{
// if(check_days() == TRUE)

{
//check_time();
if (layover >= 60 && layover <= 120)

{
printf("Flight %d (%s) \n %d:%d%c.m. %s (%s)\n %d:%d%c.m. %s (%s)\n " , flight_number, travel_days, d_hour, d_mins, d_letter, departure_city, departure_input, a_hour_stop, a_mins_stop, a_letter_stop, stop_city, stop_code);
printf("Flight %d (%s) \n %d:%d%c.m. %s (%s)\n %d:%d%c.m. %s (%s)\n " , flight_number, travel_days, d_hour_stop, d_mins_stop, d_letter_stop, stop_city, stop_code, a_hour, a_mins, a_letter, arrival_city, arrival_input);

}
}

}
}

}
}

}
}

/* if(input==0)
{

while(fscanf(flights, "%d, %d, (time) (time) (days)", flight_number, route_id, departure_time, arrival_time, (days)) != EOF)
{

if(id==route_id)
{

if(*days has daily*)
{

printf("Flight %d (%s)\n %d:%d.m. %s, %s (%s)\n %d:%d.m. %s, %s (%s)\n", flight_number, (days), d_hour, d_mins, departure_city, departure_state, departure_input, a_hour, a_mins, stop_city, stop_state, stop_code);
printf("Flight %d (%s)\n %d:%d.m. %s, %s (%s)\n %d:%d.m. %s, %s (%s)\n", flight_number, (days), d_hour_stop, d_mins_stop, stop_city, stop_state, stop_code, a_hour_stop, a_mins_stop, arrival_city, arrival_state, arrival_input);

}
else

{
printf("Route %s to %s has no 1-stop flights on the specified days\n", departure_input, arrival_input);

}
}

}
}*/

}
}

}
}

}
else

{
printf("Either airport %s or %s doesn ! t exist" , departure_input, arrival_input);

}
}

return ;
}

1

RebeccaÕs One-Stop Flight Code

//Erin Mallory
//1 stop flight function

#include <stdio.h>
#include <string.h>
//#include "airports.h"

int one_stop_flight(int choice)
{

int route_id, id, input, flight_number, d_hour, d_mins, a_hour, a_mins, d_hour_stop, d_mins_stop, a_hour_stop, a_mins_stop, z, layover, b;
char departure_input[4], arrival_input[4], stop_code[4], days[7], departure_city[50], arrival_city[50], stop_city[50], arrival_time[7], departure_time[7], a_letter, d_letter, travel_days[10], airport_code[4], city[50], arrival_airport[4], departure_airport[4], a_letter_stop, d_letter_stop;
FILE *airports, *flights, *routes;

printf("Enter departure and arrival airport codes: ");
scanf("%s %s", departure_input, arrival_input);
flights = fopen("flights.txt" , "r");
airports = fopen("airports.txt" , "r");
routes = fopen("routes.txt" , "r");

while (fscanf(airports, "%s %50[\̂n]" , airport_code, city) != EOF) //scan for the departure code but not to the arrival code
{

if (airport_code != departure_input || airport_code != arrival_input)
{

while (fscanf(routes, "%d. %s %s", &route_id, departure_airport, arrival_airport) != EOF) //finds the name of the city of the departure airport
{

if (departure_input[0]==departure_airport[0] && departure_input[1]==departure_airport[1] && departure_input[2]==departure_airport[2])
{

if (arrival_airport[0] != arrival_input[0] || arrival_airport[1] != arrival_input[1] || arrival_airport[2] != arrival_input[2])
{

strcpy(stop_code, arrival_airport);
rewind(routes);
departure_airport[0]= ! ! ;
departure_airport[1]= ! ! ;
departure_airport[2]= ! ! ;
arrival_airport[0]= ! ! ;
arrival_airport[1]= ! ! ;
arrival_airport[2]= ! ! ;
while (fscanf(routes, "%d. %s %s", &route_id, departure_airport, arrival_airport) != EOF) //now searches for the place where the stop is the

{ //depart airport and the arrival input is correct
if (stop_code[0]==departure_airport[0] && stop_code[1]==departure_airport[1] && stop_code[2]==departure_airport[2] && arrival_input[0]==arrival_airport[0] && arrival_input[1]==arrival_airport[1] && arrival_input[2]==arrival_airport[2])

{
id=route_id;
printf("Enter a day of the week (1-7, or 0 for all days):");
scanf("%d", &input);

//now depending on the day entered, program is suppose to run through each option that was entered, find where the id is similar, then
//check the days, finally check the time that is involved in the stop to make sure the layover is the correct time
//end with printing out the message if you find a suitable one stop flight

if (input== 1)
{

while (fscanf(flights, "%d %d %d:%d%c %d:%d%c %s", flight_number, route_id, d_hour, d_mins, d_letter, a_hour, a_mins, a_letter, days) != EOF)
{

if (id==route_id)
{

while (z< 7)
{

if (days[z]== 1)
{

//if(check_days() == TRUE)
{

// check_time();
if (layover >= 60 && layover <= 120)

{
printf("Flight %d (%s) \n %d:%d%c.m. %s (%s)\n %d:%d%c.m. %s (%s)\n " , flight_number, travel_days, d_hour, d_mins, d_letter, departure_city, departure_input, a_hour_stop, a_mins_stop, a_letter_stop, stop_city, stop_code);
printf("Flight %d (%s) \n %d:%d.m. %s, %s (%s)\n %d:%d%c.m. %s (%s)\n " , flight_number, (days), d_hour_stop, d_mins_stop, d_letter_stop, stop_city, stop_code, a_hour, a_mins, a_letter, arrival_city, arrival_input);

}
}

}
}

}
}

}

//if day entered is 2

if (input== 2)
{

while (fscanf(flights, "%d %d %d:%d%c %d:%d%c %s", flight_number, route_id, d_hour, d_mins, d_letter, a_hour, a_mins, a_letter, days) != EOF)
{

if (id==route_id)
{

while (z< 7)
{

if (days[z]== 2)
{
// if(check_days() == TRUE)

{
//check_time();
if (layover >= 60 && layover <= 120)

{
printf("Flight %d (%s) \n %d:%d%c.m. %s (%s)\n %d:%d%c.m. %s (%s)\n " , flight_number, travel_days, d_hour, d_mins, d_letter, departure_city, departure_input, a_hour_stop, a_mins_stop, a_letter_stop, stop_city, stop_code);
printf("Flight %d (%s) \n %d:%d%c.m. %s (%s)\n %d:%d%c.m. %s (%s)\n " , flight_number, (days), d_hour_stop, d_mins_stop, d_letter_stop, stop_city, stop_code, a_hour, a_mins, a_letter, arrival_city, arrival_input);

}
}

}
}

}
}

}

//if day entered is 3

if (input== 3)
{

while (fscanf(flights, "%d %d %d:%d%c %d:%d%c %s", flight_number, route_id, d_hour, d_mins, d_letter, a_hour, a_mins, a_letter, days) != EOF)
{

if (id==route_id)
{

while (z< 7)
{

if (days[z]== 3)
{

//if(check_days() == TRUE)
{

//check_time();
if (layover >= 60 && layover <= 120)

{
printf("Flight %d (%s) \n %d:%d%c.m. %s (%s)\n %d:%d%c.m. %s (%s)\n " , flight_number, travel_days, d_hour, d_mins, d_letter, departure_city, departure_input, a_hour_stop, a_mins_stop, a_letter_stop, stop_city, stop_code);
printf("Flight %d (%s) \n %d:%d%c.m. %s (%s)\n %d:%d%c.m. %s (%s)\n " , flight_number, travel_days, d_hour_stop, d_mins_stop, d_letter_stop, stop_city, stop_code, a_hour, a_mins, a_letter, arrival_city, arrival_input);

}
}

}
}

}
}

}

//if day entered is 4

if (input== 4)
{

while (fscanf(flights, "%d %d %d:%d%c %d:%d%c %s", flight_number, route_id, d_hour, d_mins, d_letter, a_hour, a_mins, a_letter, days) != EOF)
{

if (id==route_id)
{

while (z< 7)
{

if (days[z]== 4)
{
// if(check_days() == TRUE)

{
//check_time();
if (layover >= 60 && layover <= 120)

{
printf("Flight %d (%s) \n %d:%d%c.m. %s (%s)\n %d:%d%c.m. %s (%s)\n " , flight_number, travel_days, d_hour, d_mins, d_letter, departure_city, departure_input, a_hour_stop, a_mins_stop, a_letter_stop, stop_city, stop_code);
printf("Flight %d (%s) \n %d:%d%c.m. %s (%s)\n %d:%d%c.m. %s (%s)\n " , flight_number, travel_days, d_hour_stop, d_mins_stop, d_letter_stop, stop_city, stop_code, a_hour, a_mins, a_letter, arrival_city, arrival_input);

}
}

}
}

}
}

}

//if day entered is 5

if (input== 5)
{

while (fscanf(flights, "%d %d %d:%d%c %d:%d%c %s", flight_number, route_id, d_hour, d_mins, d_letter, a_hour, a_mins, a_letter, days) != EOF)
{

if (id==route_id)
{

while (z< 7)
{

if (days[z]== 5)
{
// if(check_days() == TRUE)

{
//check_time();
if (layover >= 60 && layover <= 120)

{
printf("Flight %d (%s) \n %d:%d%c.m. %s (%s)\n %d:%d%c.m. %s (%s)\n " , flight_number, travel_days, d_hour, d_mins, d_letter, departure_city, departure_input, a_hour_stop, a_mins_stop, a_letter_stop, stop_city, stop_code);
printf("Flight %d (%s) \n %d:%d%c.m. %s (%s)\n %d:%d%c.m. %s (%s)\n " , flight_number, travel_days, d_hour_stop, d_mins_stop, d_letter_stop, stop_city, stop_code, a_hour, a_mins, a_letter, arrival_city, arrival_input);

}
}

}
}

}
}

}

//if day entered is 6

if (input== 6)
{

while (fscanf(flights, "%d %d %d:%d%c %d:%d%c %s", flight_number, route_id, d_hour, d_mins, a_hour, a_mins, a_letter, days) != EOF)
{

if (id==route_id)
{

while (z< 7)
{

if (days[z]== 6)
{
// if(check_days() == TRUE)

{
//check_time();
if (layover >= 60 && layover <= 120)

{
printf("Flight %d (%s) \n %d:%d%c.m. %s (%s)\n %d:%d%c.m. %s (%s)\n " , flight_number, travel_days, d_hour, d_mins, d_letter, departure_city, departure_input, a_hour_stop, a_mins_stop, a_letter_stop, stop_city, stop_code);
printf("Flight %d (%s) \n %d:%d%c.m. %s (%s)\n %d:%d%c.m. %s (%s)\n " , flight_number, travel_days, d_hour_stop, d_mins_stop, d_letter_stop, stop_city, stop_code, a_hour, a_mins, a_letter, arrival_city, arrival_input);

}
}

}
}

}
}

}

//if day entered is 7

if (input== 7)
{

while (fscanf(flights, "%d %d %d:%d%c %d:%d%c %s", flight_number, route_id, d_hour, d_mins, d_letter, a_hour, a_mins, a_letter, days) != EOF)
{

if (id==route_id)
{

while (z< 7)
{

if (days[z]== 7)
{
// if(check_days() == TRUE)

{
//check_time();
if (layover >= 60 && layover <= 120)

{
printf("Flight %d (%s) \n %d:%d%c.m. %s (%s)\n %d:%d%c.m. %s (%s)\n " , flight_number, travel_days, d_hour, d_mins, d_letter, departure_city, departure_input, a_hour_stop, a_mins_stop, a_letter_stop, stop_city, stop_code);
printf("Flight %d (%s) \n %d:%d%c.m. %s (%s)\n %d:%d%c.m. %s (%s)\n " , flight_number, travel_days, d_hour_stop, d_mins_stop, d_letter_stop, stop_city, stop_code, a_hour, a_mins, a_letter, arrival_city, arrival_input);

}
}

}
}

}
}

}
}

/* if(input==0)
{

while(fscanf(flights, "%d, %d, (time) (time) (days)", flight_number, route_id, departure_time, arrival_time, (days)) != EOF)
{

if(id==route_id)
{

if(*days has daily*)
{

printf("Flight %d (%s)\n %d:%d.m. %s, %s (%s)\n %d:%d.m. %s, %s (%s)\n", flight_number, (days), d_hour, d_mins, departure_city, departure_state, departure_input, a_hour, a_mins, stop_city, stop_state, stop_code);
printf("Flight %d (%s)\n %d:%d.m. %s, %s (%s)\n %d:%d.m. %s, %s (%s)\n", flight_number, (days), d_hour_stop, d_mins_stop, stop_city, stop_state, stop_code, a_hour_stop, a_mins_stop, arrival_city, arrival_state, arrival_input);

}
else

{
printf("Route %s to %s has no 1-stop flights on the specified days\n", departure_input, arrival_input);

}
}

}
}*/

}
}

}
}

}
else

{
printf("Either airport %s or %s doesn ! t exist" , departure_input, arrival_input);

}
}

return ;
}

1

RebeccaÕs One-Stop Flight Code

//Erin Mallory
//1 stop flight function

#include <stdio.h>
#include <string.h>
//#include "airports.h"

int one_stop_flight(int choice)
{

int route_id, id, input, flight_number, d_hour, d_mins, a_hour, a_mins, d_hour_stop, d_mins_stop, a_hour_stop, a_mins_stop, z, layover, b;
char departure_input[4], arrival_input[4], stop_code[4], days[7], departure_city[50], arrival_city[50], stop_city[50], arrival_time[7], departure_time[7], a_letter, d_letter, travel_days[10], airport_code[4], city[50], arrival_airport[4], departure_airport[4], a_letter_stop, d_letter_stop;
FILE *airports, *flights, *routes;

printf("Enter departure and arrival airport codes: ");
scanf("%s %s", departure_input, arrival_input);
flights = fopen("flights.txt" , "r");
airports = fopen("airports.txt" , "r");
routes = fopen("routes.txt" , "r");

while (fscanf(airports, "%s %50[\̂n]" , airport_code, city) != EOF) //scan for the departure code but not to the arrival code
{

if (airport_code != departure_input || airport_code != arrival_input)
{

while (fscanf(routes, "%d. %s %s", &route_id, departure_airport, arrival_airport) != EOF) //finds the name of the city of the departure airport
{

if (departure_input[0]==departure_airport[0] && departure_input[1]==departure_airport[1] && departure_input[2]==departure_airport[2])
{

if (arrival_airport[0] != arrival_input[0] || arrival_airport[1] != arrival_input[1] || arrival_airport[2] != arrival_input[2])
{

strcpy(stop_code, arrival_airport);
rewind(routes);
departure_airport[0]= ! ! ;
departure_airport[1]= ! ! ;
departure_airport[2]= ! ! ;
arrival_airport[0]= ! ! ;
arrival_airport[1]= ! ! ;
arrival_airport[2]= ! ! ;
while (fscanf(routes, "%d. %s %s", &route_id, departure_airport, arrival_airport) != EOF) //now searches for the place where the stop is the

{ //depart airport and the arrival input is correct
if (stop_code[0]==departure_airport[0] && stop_code[1]==departure_airport[1] && stop_code[2]==departure_airport[2] && arrival_input[0]==arrival_airport[0] && arrival_input[1]==arrival_airport[1] && arrival_input[2]==arrival_airport[2])

{
id=route_id;
printf("Enter a day of the week (1-7, or 0 for all days):");
scanf("%d", &input);

//now depending on the day entered, program is suppose to run through each option that was entered, find where the id is similar, then
//check the days, finally check the time that is involved in the stop to make sure the layover is the correct time
//end with printing out the message if you find a suitable one stop flight

if (input== 1)
{

while (fscanf(flights, "%d %d %d:%d%c %d:%d%c %s", flight_number, route_id, d_hour, d_mins, d_letter, a_hour, a_mins, a_letter, days) != EOF)
{

if (id==route_id)
{

while (z< 7)
{

if (days[z]== 1)
{

//if(check_days() == TRUE)
{

// check_time();
if (layover >= 60 && layover <= 120)

{
printf("Flight %d (%s) \n %d:%d%c.m. %s (%s)\n %d:%d%c.m. %s (%s)\n " , flight_number, travel_days, d_hour, d_mins, d_letter, departure_city, departure_input, a_hour_stop, a_mins_stop, a_letter_stop, stop_city, stop_code);
printf("Flight %d (%s) \n %d:%d.m. %s, %s (%s)\n %d:%d%c.m. %s (%s)\n " , flight_number, (days), d_hour_stop, d_mins_stop, d_letter_stop, stop_city, stop_code, a_hour, a_mins, a_letter, arrival_city, arrival_input);

}
}

}
}

}
}

}

//if day entered is 2

if (input== 2)
{

while (fscanf(flights, "%d %d %d:%d%c %d:%d%c %s", flight_number, route_id, d_hour, d_mins, d_letter, a_hour, a_mins, a_letter, days) != EOF)
{

if (id==route_id)
{

while (z< 7)
{

if (days[z]== 2)
{
// if(check_days() == TRUE)

{
//check_time();
if (layover >= 60 && layover <= 120)

{
printf("Flight %d (%s) \n %d:%d%c.m. %s (%s)\n %d:%d%c.m. %s (%s)\n " , flight_number, travel_days, d_hour, d_mins, d_letter, departure_city, departure_input, a_hour_stop, a_mins_stop, a_letter_stop, stop_city, stop_code);
printf("Flight %d (%s) \n %d:%d%c.m. %s (%s)\n %d:%d%c.m. %s (%s)\n " , flight_number, (days), d_hour_stop, d_mins_stop, d_letter_stop, stop_city, stop_code, a_hour, a_mins, a_letter, arrival_city, arrival_input);

}
}

}
}

}
}

}

//if day entered is 3

if (input== 3)
{

while (fscanf(flights, "%d %d %d:%d%c %d:%d%c %s", flight_number, route_id, d_hour, d_mins, d_letter, a_hour, a_mins, a_letter, days) != EOF)
{

if (id==route_id)
{

while (z< 7)
{

if (days[z]== 3)
{

//if(check_days() == TRUE)
{

//check_time();
if (layover >= 60 && layover <= 120)

{
printf("Flight %d (%s) \n %d:%d%c.m. %s (%s)\n %d:%d%c.m. %s (%s)\n " , flight_number, travel_days, d_hour, d_mins, d_letter, departure_city, departure_input, a_hour_stop, a_mins_stop, a_letter_stop, stop_city, stop_code);
printf("Flight %d (%s) \n %d:%d%c.m. %s (%s)\n %d:%d%c.m. %s (%s)\n " , flight_number, travel_days, d_hour_stop, d_mins_stop, d_letter_stop, stop_city, stop_code, a_hour, a_mins, a_letter, arrival_city, arrival_input);

}
}

}
}

}
}

}

//if day entered is 4

if (input== 4)
{

while (fscanf(flights, "%d %d %d:%d%c %d:%d%c %s", flight_number, route_id, d_hour, d_mins, d_letter, a_hour, a_mins, a_letter, days) != EOF)
{

if (id==route_id)
{

while (z< 7)
{

if (days[z]== 4)
{
// if(check_days() == TRUE)

{
//check_time();
if (layover >= 60 && layover <= 120)

{
printf("Flight %d (%s) \n %d:%d%c.m. %s (%s)\n %d:%d%c.m. %s (%s)\n " , flight_number, travel_days, d_hour, d_mins, d_letter, departure_city, departure_input, a_hour_stop, a_mins_stop, a_letter_stop, stop_city, stop_code);
printf("Flight %d (%s) \n %d:%d%c.m. %s (%s)\n %d:%d%c.m. %s (%s)\n " , flight_number, travel_days, d_hour_stop, d_mins_stop, d_letter_stop, stop_city, stop_code, a_hour, a_mins, a_letter, arrival_city, arrival_input);

}
}

}
}

}
}

}

//if day entered is 5

if (input== 5)
{

while (fscanf(flights, "%d %d %d:%d%c %d:%d%c %s", flight_number, route_id, d_hour, d_mins, d_letter, a_hour, a_mins, a_letter, days) != EOF)
{

if (id==route_id)
{

while (z< 7)
{

if (days[z]== 5)
{
// if(check_days() == TRUE)

{
//check_time();
if (layover >= 60 && layover <= 120)

{
printf("Flight %d (%s) \n %d:%d%c.m. %s (%s)\n %d:%d%c.m. %s (%s)\n " , flight_number, travel_days, d_hour, d_mins, d_letter, departure_city, departure_input, a_hour_stop, a_mins_stop, a_letter_stop, stop_city, stop_code);
printf("Flight %d (%s) \n %d:%d%c.m. %s (%s)\n %d:%d%c.m. %s (%s)\n " , flight_number, travel_days, d_hour_stop, d_mins_stop, d_letter_stop, stop_city, stop_code, a_hour, a_mins, a_letter, arrival_city, arrival_input);

}
}

}
}

}
}

}

//if day entered is 6

if (input== 6)
{

while (fscanf(flights, "%d %d %d:%d%c %d:%d%c %s", flight_number, route_id, d_hour, d_mins, a_hour, a_mins, a_letter, days) != EOF)
{

if (id==route_id)
{

while (z< 7)
{

if (days[z]== 6)
{
// if(check_days() == TRUE)

{
//check_time();
if (layover >= 60 && layover <= 120)

{
printf("Flight %d (%s) \n %d:%d%c.m. %s (%s)\n %d:%d%c.m. %s (%s)\n " , flight_number, travel_days, d_hour, d_mins, d_letter, departure_city, departure_input, a_hour_stop, a_mins_stop, a_letter_stop, stop_city, stop_code);
printf("Flight %d (%s) \n %d:%d%c.m. %s (%s)\n %d:%d%c.m. %s (%s)\n " , flight_number, travel_days, d_hour_stop, d_mins_stop, d_letter_stop, stop_city, stop_code, a_hour, a_mins, a_letter, arrival_city, arrival_input);

}
}

}
}

}
}

}

//if day entered is 7

if (input== 7)
{

while (fscanf(flights, "%d %d %d:%d%c %d:%d%c %s", flight_number, route_id, d_hour, d_mins, d_letter, a_hour, a_mins, a_letter, days) != EOF)
{

if (id==route_id)
{

while (z< 7)
{

if (days[z]== 7)
{
// if(check_days() == TRUE)

{
//check_time();
if (layover >= 60 && layover <= 120)

{
printf("Flight %d (%s) \n %d:%d%c.m. %s (%s)\n %d:%d%c.m. %s (%s)\n " , flight_number, travel_days, d_hour, d_mins, d_letter, departure_city, departure_input, a_hour_stop, a_mins_stop, a_letter_stop, stop_city, stop_code);
printf("Flight %d (%s) \n %d:%d%c.m. %s (%s)\n %d:%d%c.m. %s (%s)\n " , flight_number, travel_days, d_hour_stop, d_mins_stop, d_letter_stop, stop_city, stop_code, a_hour, a_mins, a_letter, arrival_city, arrival_input);

}
}

}
}

}
}

}
}

/* if(input==0)
{

while(fscanf(flights, "%d, %d, (time) (time) (days)", flight_number, route_id, departure_time, arrival_time, (days)) != EOF)
{

if(id==route_id)
{

if(*days has daily*)
{

printf("Flight %d (%s)\n %d:%d.m. %s, %s (%s)\n %d:%d.m. %s, %s (%s)\n", flight_number, (days), d_hour, d_mins, departure_city, departure_state, departure_input, a_hour, a_mins, stop_city, stop_state, stop_code);
printf("Flight %d (%s)\n %d:%d.m. %s, %s (%s)\n %d:%d.m. %s, %s (%s)\n", flight_number, (days), d_hour_stop, d_mins_stop, stop_city, stop_state, stop_code, a_hour_stop, a_mins_stop, arrival_city, arrival_state, arrival_input);

}
else

{
printf("Route %s to %s has no 1-stop flights on the specified days\n", departure_input, arrival_input);

}
}

}
}*/

}
}

}
}

}
else

{
printf("Either airport %s or %s doesn ! t exist" , departure_input, arrival_input);

}
}

return ;
}

1

The nested fscanf() structure is
computationally complex and ignores
the instructorÕs directions.

The code for checking a day is line-for-
line repeated 7 times.*

RebeccaÕs Final One_Stop_Flight.c File

R
epeated C

ode

* - The only difference between each successive code
chunks is the integer that indicates the day (1Ð7)

Figure 1: The entirety of RebeccaÕs
one_stop_flight.c source code at the time her
project was submitted for grading. Our Þnal-code-
only analysis focuses on two design features of this
code: its multiply-nested fscanf() structure for
handling ßight data; and the seven-fold line-for-line
repetition of a single block of code for checking days
of the week.

After declaring variables and opening the three provided
text Þles (ßights, routes, and airports) 6, RebeccaÕs one-stop
ßight code enters a series of conditionally-nestedfscanf()
commands. Any suitable solution for this project would
need extract text patterns from source Þles, which fscanf()
does. So,that Rebecca usesfscanf() in her code is not it-
self surprising. Rather, whatÕs interesting ishow she uses
fscanf() in her design.

RebeccaÕs Þle-scanning logic never persistently stores the
contents of the Þles it reads in. Rather, her program reads
through Þles one line at a time, and it essentially canÕt pro-
cess or act on airport/ßight information not in the line cur-
rently being scanned. Instead, itÕs been designed to copy
single patterns temporarily, then rewind the Þle back to the
top and start reading in one-line-at-a-time again.

WhatÕs consequential about RebeccaÕs design choice? Com-
putationally, her code has to repeatedly open multiple Þles
(or sometimes repeatedly open the same Þle multiple times)
and scan lines one line at a time in order to coordinate in-
formation. So, the task of Þnding a one-stop ßight between
two cities becomes a series of repeated, one-line-at-a-time
scans of external Þles:

1. Scan the airports Þle one line at a time (line 20)
2. While scanning a given line containing an airport code/c-

ity pair, scan the Þle of pairwise airport routes one
line at a time (line 24).

3. To Þnd possible connection cities, scan theroutes Þle
one line at a time again (line 38)

4. If a route matches, scan the ßights Þle one line at
a time to verify whether the time/day constraints are
acceptable (one of the following lines depending on the
chosen day: 52, 79, 106, 134, 162, 190, 218).

RebeccaÕs code is both visually and computationally com-
6See Appendix A for examples of each of the three Þle types.

RebeccaÕs One-Stop Flight Code

//Erin Mallory
//1 stop flight function

#include <stdio.h>
#include <string.h>
//#include "airports.h"

int one_stop_flight(int choice)
{

int route_id, id, input, flight_number, d_hour, d_mins, a_hour, a_mins, d_hour_stop, d_mins_stop, a_hour_stop, a_mins_stop, z, layover, b;
char departure_input[4], arrival_input[4], stop_code[4], days[7], departure_city[50], arrival_city[50], stop_city[50], arrival_time[7], departure_time[7], a_letter, d_letter, travel_days[10], airport_code[4], city[50], arrival_airport[4], departure_airport[4], a_letter_stop, d_letter_stop;
FILE *airports, *flights, *routes;

printf("Enter departure and arrival airport codes: ");
scanf("%s %s", departure_input, arrival_input);
flights = fopen("flights.txt" , "r");
airports = fopen("airports.txt" , "r");
routes = fopen("routes.txt" , "r");

while (fscanf(airports, "%s %50[\̂n]" , airport_code, city) != EOF) //scan for the departure code but not to the arrival code
{

if (airport_code != departure_input || airport_code != arrival_input)
{

while (fscanf(routes, "%d. %s %s", &route_id, departure_airport, arrival_airport) != EOF) //finds the name of the city of the departure airport
{

if (departure_input[0]==departure_airport[0] && departure_input[1]==departure_airport[1] && departure_input[2]==departure_airport[2])
{

if (arrival_airport[0] != arrival_input[0] || arrival_airport[1] != arrival_input[1] || arrival_airport[2] != arrival_input[2])
{

strcpy(stop_code, arrival_airport);
rewind(routes);
departure_airport[0]= ! ! ;
departure_airport[1]= ! ! ;
departure_airport[2]= ! ! ;
arrival_airport[0]= ! ! ;
arrival_airport[1]= ! ! ;
arrival_airport[2]= ! ! ;
while (fscanf(routes, "%d. %s %s", &route_id, departure_airport, arrival_airport) != EOF) //now searches for the place where the stop is the

{ //depart airport and the arrival input is correct
if (stop_code[0]==departure_airport[0] && stop_code[1]==departure_airport[1] && stop_code[2]==departure_airport[2] && arrival_input[0]==arrival_airport[0] && arrival_input[1]==arrival_airport[1] && arrival_input[2]==arrival_airport[2])

{
id=route_id;
printf("Enter a day of the week (1-7, or 0 for all days):");
scanf("%d", &input);

//now depending on the day entered, program is suppose to run through each option that was entered, find where the id is similar, then
//check the days, finally check the time that is involved in the stop to make sure the layover is the correct time
//end with printing out the message if you find a suitable one stop flight

if (input== 1)
{

while (fscanf(flights, "%d %d %d:%d%c %d:%d%c %s", flight_number, route_id, d_hour, d_mins, d_letter, a_hour, a_mins, a_letter, days) != EOF)
{

if (id==route_id)
{

while (z< 7)
{

if (days[z]== 1)
{

//if(check_days() == TRUE)
{

// check_time();
if (layover >= 60 && layover <= 120)

{
printf("Flight %d (%s) \n %d:%d%c.m. %s (%s)\n %d:%d%c.m. %s (%s)\n " , flight_number, travel_days, d_hour, d_mins, d_letter, departure_city, departure_input, a_hour_stop, a_mins_stop, a_letter_stop, stop_city, stop_code);
printf("Flight %d (%s) \n %d:%d.m. %s, %s (%s)\n %d:%d%c.m. %s (%s)\n " , flight_number, (days), d_hour_stop, d_mins_stop, d_letter_stop, stop_city, stop_code, a_hour, a_mins, a_letter, arrival_city, arrival_input);

}
}

}
}

}
}

}

//if day entered is 2

if (input== 2)
{

while (fscanf(flights, "%d %d %d:%d%c %d:%d%c %s", flight_number, route_id, d_hour, d_mins, d_letter, a_hour, a_mins, a_letter, days) != EOF)
{

if (id==route_id)
{

while (z< 7)
{

if (days[z]== 2)
{
// if(check_days() == TRUE)

{
//check_time();
if (layover >= 60 && layover <= 120)

{
printf("Flight %d (%s) \n %d:%d%c.m. %s (%s)\n %d:%d%c.m. %s (%s)\n " , flight_number, travel_days, d_hour, d_mins, d_letter, departure_city, departure_input, a_hour_stop, a_mins_stop, a_letter_stop, stop_city, stop_code);
printf("Flight %d (%s) \n %d:%d%c.m. %s (%s)\n %d:%d%c.m. %s (%s)\n " , flight_number, (days), d_hour_stop, d_mins_stop, d_letter_stop, stop_city, stop_code, a_hour, a_mins, a_letter, arrival_city, arrival_input);

}
}

}
}

}
}

}

//if day entered is 3

if (input== 3)
{

while (fscanf(flights, "%d %d %d:%d%c %d:%d%c %s", flight_number, route_id, d_hour, d_mins, d_letter, a_hour, a_mins, a_letter, days) != EOF)
{

if (id==route_id)
{

while (z< 7)
{

if (days[z]== 3)
{

//if(check_days() == TRUE)
{

//check_time();
if (layover >= 60 && layover <= 120)

{
printf("Flight %d (%s) \n %d:%d%c.m. %s (%s)\n %d:%d%c.m. %s (%s)\n " , flight_number, travel_days, d_hour, d_mins, d_letter, departure_city, departure_input, a_hour_stop, a_mins_stop, a_letter_stop, stop_city, stop_code);
printf("Flight %d (%s) \n %d:%d%c.m. %s (%s)\n %d:%d%c.m. %s (%s)\n " , flight_number, travel_days, d_hour_stop, d_mins_stop, d_letter_stop, stop_city, stop_code, a_hour, a_mins, a_letter, arrival_city, arrival_input);

}
}

}
}

}
}

}

//if day entered is 4

if (input== 4)
{

while (fscanf(flights, "%d %d %d:%d%c %d:%d%c %s", flight_number, route_id, d_hour, d_mins, d_letter, a_hour, a_mins, a_letter, days) != EOF)
{

if (id==route_id)
{

while (z< 7)
{

if (days[z]== 4)
{
// if(check_days() == TRUE)

{
//check_time();
if (layover >= 60 && layover <= 120)

{
printf("Flight %d (%s) \n %d:%d%c.m. %s (%s)\n %d:%d%c.m. %s (%s)\n " , flight_number, travel_days, d_hour, d_mins, d_letter, departure_city, departure_input, a_hour_stop, a_mins_stop, a_letter_stop, stop_city, stop_code);
printf("Flight %d (%s) \n %d:%d%c.m. %s (%s)\n %d:%d%c.m. %s (%s)\n " , flight_number, travel_days, d_hour_stop, d_mins_stop, d_letter_stop, stop_city, stop_code, a_hour, a_mins, a_letter, arrival_city, arrival_input);

}
}

}
}

}
}

}

//if day entered is 5

if (input== 5)
{

while (fscanf(flights, "%d %d %d:%d%c %d:%d%c %s", flight_number, route_id, d_hour, d_mins, d_letter, a_hour, a_mins, a_letter, days) != EOF)
{

if (id==route_id)
{

while (z< 7)
{

if (days[z]== 5)
{
// if(check_days() == TRUE)

{
//check_time();
if (layover >= 60 && layover <= 120)

{
printf("Flight %d (%s) \n %d:%d%c.m. %s (%s)\n %d:%d%c.m. %s (%s)\n " , flight_number, travel_days, d_hour, d_mins, d_letter, departure_city, departure_input, a_hour_stop, a_mins_stop, a_letter_stop, stop_city, stop_code);
printf("Flight %d (%s) \n %d:%d%c.m. %s (%s)\n %d:%d%c.m. %s (%s)\n " , flight_number, travel_days, d_hour_stop, d_mins_stop, d_letter_stop, stop_city, stop_code, a_hour, a_mins, a_letter, arrival_city, arrival_input);

}
}

}
}

}
}

}

//if day entered is 6

if (input== 6)
{

while (fscanf(flights, "%d %d %d:%d%c %d:%d%c %s", flight_number, route_id, d_hour, d_mins, a_hour, a_mins, a_letter, days) != EOF)
{

if (id==route_id)
{

while (z< 7)
{

if (days[z]== 6)
{
// if(check_days() == TRUE)

{
//check_time();
if (layover >= 60 && layover <= 120)

{
printf("Flight %d (%s) \n %d:%d%c.m. %s (%s)\n %d:%d%c.m. %s (%s)\n " , flight_number, travel_days, d_hour, d_mins, d_letter, departure_city, departure_input, a_hour_stop, a_mins_stop, a_letter_stop, stop_city, stop_code);
printf("Flight %d (%s) \n %d:%d%c.m. %s (%s)\n %d:%d%c.m. %s (%s)\n " , flight_number, travel_days, d_hour_stop, d_mins_stop, d_letter_stop, stop_city, stop_code, a_hour, a_mins, a_letter, arrival_city, arrival_input);

}
}

}
}

}
}

}

//if day entered is 7

if (input== 7)
{

while (fscanf(flights, "%d %d %d:%d%c %d:%d%c %s", flight_number, route_id, d_hour, d_mins, d_letter, a_hour, a_mins, a_letter, days) != EOF)
{

if (id==route_id)
{

while (z< 7)
{

if (days[z]== 7)
{
// if(check_days() == TRUE)

{
//check_time();
if (layover >= 60 && layover <= 120)

{
printf("Flight %d (%s) \n %d:%d%c.m. %s (%s)\n %d:%d%c.m. %s (%s)\n " , flight_number, travel_days, d_hour, d_mins, d_letter, departure_city, departure_input, a_hour_stop, a_mins_stop, a_letter_stop, stop_city, stop_code);
printf("Flight %d (%s) \n %d:%d%c.m. %s (%s)\n %d:%d%c.m. %s (%s)\n " , flight_number, travel_days, d_hour_stop, d_mins_stop, d_letter_stop, stop_city, stop_code, a_hour, a_mins, a_letter, arrival_city, arrival_input);

}
}

}
}

}
}

}
}

/* if(input==0)
{

while(fscanf(flights, "%d, %d, (time) (time) (days)", flight_number, route_id, departure_time, arrival_time, (days)) != EOF)
{

if(id==route_id)
{

if(*days has daily*)
{

printf("Flight %d (%s)\n %d:%d.m. %s, %s (%s)\n %d:%d.m. %s, %s (%s)\n", flight_number, (days), d_hour, d_mins, departure_city, departure_state, departure_input, a_hour, a_mins, stop_city, stop_state, stop_code);
printf("Flight %d (%s)\n %d:%d.m. %s, %s (%s)\n %d:%d.m. %s, %s (%s)\n", flight_number, (days), d_hour_stop, d_mins_stop, stop_city, stop_state, stop_code, a_hour_stop, a_mins_stop, arrival_city, arrival_state, arrival_input);

}
else

{
printf("Route %s to %s has no 1-stop flights on the specified days\n", departure_input, arrival_input);

}
}

}
}*/

}
}

}
}

}
else

{
printf("Either airport %s or %s doesn ! t exist" , departure_input, arrival_input);

}
}

return ;
}

1

Figure 2: A portion of RebeccaÕs nested fscanf()
statements

plex. The multiply-nested blocks can make it di"cult for a
human reader (or grader) to follow the code ßow, which may
have made it challenging for Rebecca to debug her own work.
Moreover, nested for- and while-loops increase dimensions of
complexity in RebeccaÕs programÑwhat computer scientists
would call the ÒBig-OÓ characterization of her program [1].
For every nesting of a scan loop (there are 4 in her submit-
ted code) Rebecca increases by 1 the degree of a polynomial
that represents the execution time of her program. So, from
a performance perspective, RebeccaÕs design su!ers a trade-
o! in that with each invocation of a scanning loop, we see
a geometric increase in the time complexity of her program.
But, RebeccaÕs code also has a particular kind of elegance.

3.2 RebeccaÕs Þle-scanning solution has elegant
constant space complexity

While RebeccaÕs design isnÕt optimized for speed, it uses
drastically less memory than do other solutions (including
the instructorÕs o"cial solution). What Rebecca could have
done (and what IÕll discuss in a later section) is read the en-
tire contents of all data Þles into RAM. IÕll call that approach
an in-memory solution, because all of the ßight information
is loaded into memory. Instead, her solution stores only a
handful of lines (4 at most) in memory at a time, leaving
the rest on-disk. An analogy helps clarify the di!erence.

If we think of the input Þles like a giant grocery list, an
in-memory solution would be like having to put each list
item into your cart before you go to check out. The longer
the list gets, the bigger cart youÕd need to collect every item
on the list before checking out. Crucially, everything has to
go into the cart before it can be purchased. If the grocery
list very long, you may need multiple carts. If the list gets
absurdly long you may even exhaust all carts in the store
and still Þnd yourself with an unÞnished list.

RebeccaÕson-disk solution would be like restricting your-
self to a single, small grocery basket, but taking as many
trips as you need to get all the itmes from the store shelves
to the checkout conveyor belt. She can only ferry just a few
groceries each go-around. But no matter how long the list
gets, sheÕll never need more than a single handbasket to get
all her items to checkout. She just takes more trips.

The reason for comparing an in-memory to an on-disk so-
lution is that design work always operates under constraints.
Sometimes (say, in cloud computing applications) RAM is
cheap, and a solution that loads all data into RAM may be
optimal. But, there are also applied situations (biomedi-
cal implants, space technology) where memory is expensive
and possibly not even upgradeable. In those contexts, a

constant-space solution like RebeccaÕs might be ideal, be-
cause designing for the long-term means assuming a com-
puter we launch into space now and canÕt ever touch again
for years or decades.

But, while we know the structure of RebeccaÕs design,
we know almost nothing about its context. Our analytical
methodÑexamining only the code in front of usÑforecloses
possibilities of recovering those details. We lack access to
activity history: we donÕt know how Rebecca ended up
structuring her code this way, nor do we know why. And,
we lack access to conceptual information: we canÕt know
from just this code whether Rebecca knew or understood
the kind of complexity and performance trade-o! she made.
We also canÕt know with certainty how she felt about the
consequences of the decision. We know only that her Þnal
submitted design used multiply-nested scanning loops.

3.3 RebeccaÕs Þle-scanning solution ignores an
assignment directive

For each of the four projects during the semester, the in-
structor gave students what he called a Òdesign brief.Ó Each
design brief outlined the problem to be solved as well as
any constraints imposed on studentsÕ solutions. For exam-
ple, in the ßights project, studentsÕ programs had to reject
candidate multi-stop trip routes if the layover time would
be too short (under 30 minutes) or too long (more than two
hours). But, in addition to what I might call user-centered
constraints (viz., reject multi-stop trips that would have gru-
eling layovers), the instructor also directed students on im-
plementation details: ways their program should work at a
technical level that would be invisible to the user.

SpeciÞcally, the design brief discusses how to handle read-
ing in data from the Þles provided for the project:

To parse the 3 airline ßight database Þles, you
will need to declare arrays that will receive all
the data. For the purposes of determining array
sizes, you may assume there will never be more
than 100 airports in the Òairports.txtÓ Þle, 500
route IDs in the Òroutes.txtÓ Þle, and 3000 ßights
in the Òßights.txtÓ Þle. (Flights Database class
assignment, 2012)

Presumably, from the instructorÕs directive, oneÒwill needÓ
to have an array of airports (mapping 3-letter code to full
airport name), an array of routes (mapping a pair of air-
ports to a unique routing number), and an array of ßights
(mapping unique ßight numbers to a collection of informa-
tion about that ßight). And, to fulÞll that need as stated, a
studentÕs code would have to:

¥ Create arrays by declaring them as variables
¥ Store data from the Þles in array entries using variable

assignment
¥ Access the arrays to fetch relevant ßight data

Rebecca creates no arrays. Instead, her code attempts
to accomplish the same task that an array would, but she
doesnÕt use a global data structure at all.7 A consequence
7ThatÕs not entirely true. Technically, variables including
route_id and flight_number are globally-acessible within
the scope of the one_stop_flight() function. But, those
variables are integers. ThereÕs no way the variables Rebecca
declares could store all the data required in-memory.

of RebeccaÕs approach is that she has no easy way to refer
to arbitrary airports, routes, or ßights in her code, since
her program has no mechanism to store such information
persistently. A second consequence is that since she avoids
persistent data structures, the complex work her program
does to read through each line of each Þle, in some cases
multiple times (above) is repeated every single time a user
initiates a query.

Given RebeccaÕs particular design pattern, we asked the
question of whether she may have tried creating arrays be-
fore ultimately settling on her scanning-loop solution. The
answer, as far as we can tell, is no. We analyzed the history
of both RebeccaÕs main() method and her one-stop ßight
code module. Our search revealed that no snapshots exist
in which Rebecca created arraysÑeither through dynami-
cally allocating them (through heap memory), or, as the as-
signment recommended, creating overprovisioned Þxed-size
arrays on the stack. In other words, at the limit of resolu-
tion of our data collection, and within the scope of the code
Rebecca typed, she never tried an array solution.8

Curiously, we have evidence outside of RebeccaÕs code
that suggests she knew, and even perhaps had seen, an array-
based design solution. In a Þle called Ònotes.txtÓ contained
in her project directory and created March 19, 2012, we see
the following lines:

think about using: sscanf, array of pointers

his header file!!!
-max line lenght: 2000
-max string lenght: 100
-defined true and false
-max airports: 100
-max routes: 500
-max flights: 3000
-min connect time: 60.0
-max connect time: 120
-daily maxk: 254 ???
-char airports[max airports][4]
-char aiport_cities[max airports][max string lenght]
-he has 3D array for routes....

char routes[max routes][2][4]

The context of the Þle is not entirely apparent, because we
did not observe lecture on March 19, the day the notes.txt
Þle entered RebeccaÕs snapshot history. Also, whether ÒhisÓ
refers to the instructor or perhaps another classmate is un-
clear. ÑWhat seems clear, however, is that Rebecca was re-
sponding to items she had seen in someone elseÕs header Þle.
Consequently, putting together the notes.txt Þle with Re-
beccaÕs Þnal code submission reveals Rebecca was exposed
to a design solution involving arrays, but never implemented
it in her code. Thus, a lingering and consequential question
remains unanswered: why did Rebecca adopt a solution that
deÞed the directions of the assignment, especially when sheÕd
seen part of a potential design solution that did use arrays?

We return to this question in a later section, but Þrst we
turn our attention to another unusual feature of RebeccaÕs
work: seven-fold repetition of code.

8If Rebecca had tried an array solution and compiledÑ
whether error-free or notÑour automated snapshot collec-
tion system would have captured it.

3.4 Rebecca repeats the same chunk of code
seven times

A second key feature of RebeccaÕs code is the almost iden-
tical repetition of a single 23-line code chunk seven times
(lines 50Ð240). Because users can run queries by choosing
a day to ßy (and some ßights only run on certain days),
studentsÕ code must be able to handle each of the seven pos-
sible days for when a user would want to ßy. In principle,
RebeccaÕs code achieves just that.9 In practice, her code
creates seven di!erent conditional branchesÑone branch for
each day of the weekÑwhere the code within each branch is
duplicated.

Figure 2-1 represents a side-by-side delta-comparison of
two such day-speciÞc branches of code. Lines 158Ð184 of
RebeccaÕs original code are on the left; lines 214Ð241 are on

the
right, and in the Þgure lines have been renumbered (from 1)
to ease comparison. In this delta view, lines that di!er are
highlighted in pale red, and characters that di!er are shown
in bold red.

The two code blocks demonstrate just how much code
is duplicated for handling user input based on days of the
week. Between these two chunks there are only three di!er-
ences (lines 1, 3, and 11): all of the references to day are
changed from 5 (on the left) to 7 (on the right). 10 More-
over, the changes from block to block are patternistic and
predictable: the Þrst line of the block is a non-functioning
comment, the third line of each block just checks whether
the rest of the block should run, while the eleventh line of
each block compares an array entry to the day of interest.
Everything else is duplicate boilerplate that is essentially
repeated 7 times; once for each day of the week. I say Òes-
sentially repeatedÓ because, as weÕll now explore, there are
minute di!erences between some of the code chunkÕs seven
incarnations.

Repeating code as Rebecca has done can be problematic
because each repetition multiplies the number of places she
has to examine and modify if she wants to introduce a sys-
tematic change. If, for example, Rebecca wanted to change
the internal names she gives to scanned-in variables, she has
to make that change in seven di!erent blocks of code: once

9I say Òin principleÓ because RebeccaÕs code would not com-
pile on my machine. So, in practice, her design contains
compile-time errors (and possibly run-time errors). Nev-
ertheless, her code provides ample evidence that she was
attempting conditional logic to handle each possible day.

10 In the text-input Þles students were given, days of the week
were represented as integers (rather than the perhaps more
familiar ÒTuesday,ÓÒWednesday,Ó etc.).

for each of the seven days of the week sheÕs hard-coded. And,
since any given change may inadvertently introduce an er-
ror, increasing the number of places she repeats code also
makes the code that much more vulnerable to inconsistently-
applied changes.

Indeed, a repeated, inconsistently-applied scan pattern
change seems to be exactly what occurred in RebeccaÕs code
history. Between 10:04pm and 10:37pm on March 26, Re-
becca introduced a large set of changes to the one-stop ßight
module. Among those changes Rebecca added thed_letter
Þle-scanning-parameter to what would become line 218, but
not to what would become line 190. We can reasonably in-
fer Rebecca added this parameter as a way of capturing the
ÒamÓ or ÒpmÓ speciÞer given the input ÞleÕs format. More-
over, we can verify through Git that once introduced, Re-
beccaÕs omission of the parameter was never modiÞed or
corrected. The problem percolated through to her Þnal sub-
mitted code.

4. AUGMENTING CODE SNAPSHOTS WITH
INTERVIEW DATA

In the previous section, I described two unusual features
of RebeccaÕs code for searching one-stop ßights:

1. Her use of multiply nested loops that scan through
source information Þles without storing the informa-
tion in those Þles persistently in long-term memory

The code for handling a userÕs chosen day, which was
essentially the same block of code copied and pasted 7
times

In this section, I o!er explanations of RebeccaÕs design
choices by interpreting data from over Þve hours of clinical
interviews I conducted with her. I draw from those inter-
views to explain how design decisions that might seem un-
usual to an expert in fact grew rather unproblematically (for
Rebecca) as ways of deliberately transferring prior knowl-
edge and designs (which explains feature 1) or coping with
a constraint to produce a reliable solution she could trust
(which explains feature 2).

4.0.1 Rebecca employed fscanf loops because she was
deliberately reusing from an Basic Program-
ming Assignment.

RebeccaÕs choices become easier to understand when we
consider what she said in interviews about the code she
wrote. My Þrst opportunity to discuss that code was on
March 16, 2012, in what would be her third of Þve inter-
views that semester. This interview was conducted very
early into the time window for the Flight Database project,
before Rebecca had done the bulk of her coding. We were
discussing her prospective design plans. As Rebecca began
explaining how the logic for a one-stop ßight search was
supposed to work, she described what she saw as one of the
central di"culties of the project: the relevant information
for answering user queries was spread across multiple Þles
(Interview, March 16, 2012).

As Rebecca explained, something as simple as Þnding a
ßight from, say, JFK to BWI Òinvolves scanning through
multiple Þles, because itÕs not like one Þle that has every-
thing conveniently like, thereÓ (Interview, March 16, 2012).
When I asked what would make things easier if, hypotheti-
cally, all the information she needed were in one Þle, Rebecca

responded by appealing to a previous assignment from last
semester. In RebeccaÕs Þrst-semester programming course
(Basic Programming for Engineers), one of several multi-
week projects had students create a system for users to con-
duct a fantasy football draft. The project involved, among
other things, topics related to basic Þle management in the
C language, including how to read in a Þle from disk (Inter-
view, March 16, 2012). Rebecca explained:

Rebecca: Um, like, cuz when we Þrst got this
project, uh, I actually was thinking Òoh, well this
is just a lot like our fantasy football project we
did last year.Ó /Huh/ We uh, had to scan in,
uh, someone had to enter like ÒI wanna pick a
quarterback,Ó so then you had to scan in and go
and look for all the quarterbacks in the Þle and
sayÒOK, this is the quarterbackÓand everything.
But, in that project we only had the one Þle that
had everyone listed: quarterbacks, runningbacks,
wide receiver, in one Þle. And all the information
you needed there /Mmhmm/ So, you could just
get it all and compare it all at once with one scanf
/mmm/ whereas this you have to, take, uh, you
scan in the ßights, ah, the ßights Þle. So, then
you Þnd the ßight number. You have to save the
ID from that ßight number, use that ID to scan
into the routes Þle /mmhmm/ and then save the
routes information and then print it out with the
ßights information. (Interview, March 16, 2012)

RebeccaÕs comments suggest she saw a coupling between
the arrangement of the input information and the structure
(and complexity) of the computational logic needed to pro-
cess it. When one fantasy football Þle contained all of the
relevant information (player, position, team, etc.) it could
be read in and processed one line at a time. When infor-
mation was fractured across Þles (pairs of airport codes in
one Þle, full spell-outs of airport names in another, for ex-
ample), Rebecca felt sheÕd need to use information shared
across Þles (such as a route ID) to coordinate a scan across
one Þle with a scan across another (and possibly an addi-
tional scan across a third Þle) before she would have all the
necessary information and computations to return a result.

I was interested in the connections Rebecca saw across
projects, so I pressed on. When I asked whether she thought
about trying to make this project like her fantasy football
project, her answer was an emphatic ÒOh yeah, deÞnitely!Ó
As she elaborated:

Rebecca: That was like, as soon as we got this
project I was like, ah! fantasy football! IÕm
just gonna go and see how much code I can re-
work from that and like, use /mmhmm/ in this
project. And, my whole main Þle, like all those
NULL checks and everything, I mean theyÕre re-
ally simple to write, but I just copied Ôem and put
Ôem there, cuz, we had the same thing. /Mmh-
mm/ Um, just changed, like, the names of the
Þles.

As she explained, Òreading in ÞlesÓ was a topic covered
extensively in Basic ProgrammingÑthe Þrst course of the
sequenceÑbut they hadnÕt talked much about it in this
semesterÕs course.

Rebecca: Because reading in from Þles was a big
Basic Programming topic we hadnÕt talked about
it much. /Yup/ So, I just, uh, went back to check
how I did that /mmhmm/ and then, if I could I
copied, but because a lot of the variables were
di!erent, uh, like these were more varÑless, less
variables, and more strings than last year /mmh-
mm/ uh, I just retyped it out. I just looked at
how it was similar. (Interview, March 16, 2012)

In sum, then, RebeccaÕs repeated, nested scan loops were a
structure she deliberately borrowed from a previous semesterÕs
project. By her telling, what seemed obvious was thatÒscan-
ning in from ÞlesÓ was a topic sheÕd already covered, which
meant sheÕd already developed a workable solution for how
to solve that problem. Thus, she saw the problem of how to
coordinate airport information from di!erent Þles as a new
instance of the old problem of reading information in from
one Þle. Her ßight database work, accordingly, tried oppor-
tunistically adapting a previously working solution to Þt the
current circumstances.

4.0.2 Rebecca repeated code because she wanted to
re-use functionality she could trust

By our interview on April 6, Rebecca had already com-
pleted and submitted her code for the ßights database project.
When I looked at the Þnal form of her code for Þnding one-
stop ßights I noted an unusual pattern described in sec-
tion 2.4.3 above: she had a code chunk repeated almost
character-for-character 7 times. In the interview, this sec-
tion is what Rebecca referred to as Òmy obnoxiously long
part of my codeÓ (Interview, April 6, 2012):

Rebecca: So, the way I did it was really long
and probably, there was probably like a much
easier way, but I just did a giant ifÑif state-
ments { swings cursor from line 50 to line 63}
If they wanted to ßy on Monday /OK/ I went
through and checked to see if the route ID was
the same { wiggles cursor across line 54} , and
if it did, I went through to cheÑuh, I made a
check days function { wiggles cursor across line
60} uh, I ended up commenting that out cuz I
didnÕt end up /mmhmm/ Þnishing it. But, uh,
my check days function worked, it just didnÕt
work completely with the code /OK/ (Interview,
April 6, 2012)

As I scrolled the screen to look at each of the repeated
blocks of code, Rebecca elaborated:

Rebecca: And this is why my code, I feel like, is
not uh, concise enough, or, I donÕt really, I forget
the word they use, but uh / { inaudible} / itÕs very
long because I couldnÕt Þgure out if I should do
a while loop or whatever /Uh-huh/ But, so I was
just like, I know this way should work if I get
everything else right, that uh, just go through, if
inputÕs 1, if inputÕs 2 and just do the same thing
in each of Ôem just /Mmmhmm/ check for, Òoh,
if days is 2, if days is 1Ó instead of, likeÑCuz
I probably could have done, like, maybe a giant
while loop, um, to try and, and if, while, inputs
something, uh, then you check to see whatever

i is. But, I could, I didnÕtÑcouldnÕt Þgure out
how that would work, so I just did the same thing
six times.

Interviewer: So, in, in each one of these itÕs like,
looks, and IÕm not sure about this, but it looks
like the way you wrote itÑso this { highlights line
79} is pretty much the same in all of them, right?
/Yes/

Interviewer: SoÕs this one{ highlights line 81}
/Yes/ this one { highlights line 83} HereÕs where
itÕs di!erent { highlights line 85}

Rebecca: Yes, because it just checks if itÕs a 2
instead of a 1.

Interviewer: OK. Um. /And then everything else
is still the same/ LayoverÕs still the same. OK.

Rebecca: Yeah. So thatÕs why itÕs probÑitÕs not,
uh, the neatest code or whatever, because itÕs the
same thing six times. (Interview, April 6, 2012)

Given RebeccaÕs assertions that her code wasnÕt neat, I
asked what, if anything she might change if she hypotheti-
cally had another week to work on the project.

Rebecca: Um, Þrst IÕd try and get it to make sure
it worked completely /Ahh, OK, yeah/ this way,
{ laughs} , uh, and then, if I had the week after
that whatever, IÕd probably go through and see
if I could Þgure out a way to make it concise-
r because he likes uh, neat, as, like, code thatÕs,
uh, easy for the user to see /uh-huh/ I guess. Uh,
I forget what, I keep forgetting what the word he
used was at the beginning of the year, but uh,
just very concise and, uh, this is a very expanded
{ laughs} way of coding, but, it made sense to
me at the time and I was just like ÒI just want
something that makes sense right now.Ó /Right/
So, that I can actually work with and have an
idea.

Interviewer: Um, OK. So, so it would take you
some extra thinking to Þgure out /Mmmhmm/
how to break this down into /Yes/ smaller stu!
/smaller code/ Do you feel like youÕve had a lot
of practice doing that, or like?

Rebecca: Uh, a little. Like, but, a lot of times in
Basic Programming they didnÕt really mention
too much about being concise. They were just
like Òif you can do it, do itÓ{ laughs} /OK/ So I
usually stuck to what made sense to me /Right/
uh, to turn the projects in. (Interview, April 6,
2012)

In summary, RebeccaÕs Òexpanded way of codingÓ was a
way of expressing ideas in code that, in her own words,
Òmade senseÓ to her. Moreover, her Basic Programming
course seemed, to her, to set expectations that functional-
ity comes Þrst; ÒneatnessÓ second. If she hypothetically had
more time to work on the project, her Þrst priority would be
to get her existing code working. Consequently, RebeccaÕs
repetition of code can be understood as a kind of prag-
matic solution to a di"cult problem: choosing which com-
putational techniques were best for accomplishing a com-
plex goal. Moreover, her approach was shaped by the fact

Figure 3: We developed CodeTimeline to display
snapshots in a timeline. Darkened lines reveals how
the seven-fold repeated code began as a very simple
switch statement but grew and grew in complexity
over time.

that her Basic Programming course historically valued a
philosophy of Òif you can do it, do itÓ (Interview, April 6,
2012). Ultimately, those factors seem to be what led Re-
becca to choose repeating code that made sense to her over
the di"cult-to-envision alternative of a Ògiant while loop.Ó

5. CONCLUSION
Our interview with Rebecca corroborates the snapshot

evidence that Rebecca directly copied code from a prior
project. Moreover, RebeccaÕs behavior of copying her old
fantasy football code suggests several implications.

First, RebeccaÕsÒdesign inertiaÓactually traces as far back
as the decisions she made during the Þrst project of her Þrst
semester of programming. That is, by copying code (and
particularly Þle-scanning logic) from an old project, she was
incorporating core functionality that she designed when she
Þrst learned to program. Admittedly, code reuse isnÕt in and
of itself a problem in software development. [7] Parson and
Saunders for example, have written on cognitive heuristics
that keep professional software engineers from reusing code,
even when reusing and extending existing software artifacts
is the best course of action on a software project. So, the
concern isnÕt that Rebecca reused code, but rather the mat-
ter of what cognitive dynamics were at play that directed
her choice to reuse that code. In that regard, the constructs
of framing and transfer may help us better understand Re-
beccaÕs activity.

Framing, as it has been applied in contexts such as physics
education [2, 4, 11] and mathematics education [16], con-
cerns how participants understand the social and intellectual
activities in which theyÕre engaged. Of particular relevance
to studying Rebecca is the notion of epistemological framing,
which van de Sande and Greeno summarize as

participantsÕ understanding of kinds of knowl-
edge that are relevant for use in their activity
and the kinds of knowledge, understanding, and
information they need to construct to succeed
in their activity (e.g., what kind of information
would count as a solution to the problem they
are working on). [16]

RebeccaÕs decision to copy code from fantasy football im-
plicitly reßects her orientation toward what kinds of knowl-
edge (the course topic of scanning information from Þles) are
relevant to solving the problem. More broadly, note that in
RebeccaÕs interview she explains that her primary objective
is to get a solution that works, which stands in contrast to
having a design priority like having a solution that is ele-
gant, or one that transparently manages complexity. That
commitment again reßects a manifestation of epistemologi-
cal framing as Òwhat would count as a solution,Ó where for
Rebecca what counts is a solution that works.

Additionally, Rebecca saw the ßight database project as
a new instance of a prior problem: fantasy football. Con-
sequently, she consciously adapted past solution patterns,
because the ßights database project looked like it contained
problems she had already solved in previous code. RebeccaÕs
deliberate reuse of old code can be readily understood as an
example of what Schwartz, Chase, and Bransford [12] call
Òoverzealous transferÓ:

Of particular concern are situations where stu-
dents transfer skills, knowledge, and routines that
are e!ective for the task at hand but may nev-
ertheless be sub-optimal in the long run because
they block additional learning. We will call this
overzealous transfer (OZT)Ñpeople transfer so-
lutions that appear to be positive because they
are working well enough, but they are neverthe-
less negative with respect to learning what is
new. [12]

In short, when students overzealously transfer prior knowl-
edge as Rebecca did, Òthey may believe they are doing the
right thing, and without appropriate feedback they cannot
know otherwiseÓ [12]

In RebeccaÕs case, the constructs of framing and overzeal-
ous transfer together let us describe why she would have
repurposed a solution that she felt was adequate, even to
the exclusion of the topics being taught in class and the ex-
plicit directions in the project brief. By framing the ßights
database problem as a new instance of an old problem, Re-
becca treated it as she did the old problem. But, she ar-
guably transferred too much of the old codeÕs structure; so
much that she had to introduce even more complexity into
her code just to make the transferred parts work properly
under the new constraints. And, because her framing of
the task seemed to privilege a philosophy of Òif you can do
it, do itÓ (Interview, April 6, 2012), her primary goals were
to get her program to work, by whatever means she could
understand and trust.

6. ACKNOWLEDGMENTS
Blinded for review.

References
[1] Cormen, T. H., Leiserson, C. E., and Rivest,

R. L. Introduction to algorithms . The MIT electri-
cal engineering and computer science series. MIT Press
; McGraw-Hill, Cambridge, Mass. : New York, 1990.

[2] Elby, A., and Hammer, D. Epistemological resources
and framing: A cognitive framework for helping teach-
ers interpret and respond to their studentsÕ epistemolo-
gies. In Personal epistemology in the classroom: theory,
research, and implications for practice , L. D. Bendixen
and F. C. Feucht, Eds. Cambridge University Press,
Cambridge, UK ; New York, 2010, pp. 409Ð434.

[3] Hall, R., Stevens, R., and Torralba, T. Dis-
rupting representational infrastructure in conversations
across disciplines.Mind, Culture & Activity 9 , 3 (2002),
179Ð210.

[4] Hammer, D., Elby, A., Scherr, R. E., and Redish,
E. F. Resources, framing, and transfer. In Transfer of
learning from a modern multidisciplinary perspective ,
J. P. Mestre, Ed., Current perspectives on cognition,
learning, and instruction. IAP, Greenwich, CT, 2005.

[5] Jadud, M. C. Methods and tools for exploring novice
compilation behaviour. In Proceedings of the 2006 in-
ternational workshop on Computing education research
- ICER Õ06(Canterbury, United Kingdom, 2006), p. 73.

[6] K ¬olling, M., and Utting, I. Building an open,
large-scale research data repository of initial program-
ming student behaviour. In Proceedings of the 43rd
ACM technical symposium on Computer Science Edu-
cation (New York, NY, USA, 2012), SIGCSE Õ12, ACM,
pp. 323Ð324.

[7] Parsons, J., and Saunders, C. Cognitive heuristics
in software engineering: Applying and extending an-
choring and adjustment to artifact reuse. IEEE Trans-
actions on Software Engineering 30, 12 (Dec. 2004), 873
Ð 888.

[8] Petre, M., and van der Hoek, A. , Eds. Software de-
signers in action: a human-centric look at design work.
Chapman & Hall/CRC innovations in software engi-
neering and software development. CRC Press, Taylor
& Francis Group, Boca Raton, 2014.

[9] Rodrigo, M. M. T., Baker, R. S., Jadud, M. C.,
Amarra, A. C. M., Dy, T., Espejo-Lahoz, M.
B. V., Lim, S. A. L., Pascua, S. A., Sugay, J. O.,
and Tabanao, E. S. A!ective and behavioral predic-
tors of novice programmer achievement. In Proceedings
of the 14th annual ACM SIGCSE conference on Innova-
tion and technology in computer science education(New
York, NY, USA, 2009), ITiCSE Õ09, ACM, pp. 156Ð160.

[10] Rodrigo, M. M. T., Tabanao, E. S., Lahoz, M. B.,
and Jadud, M. C. Analyzing Online Protocols to
Characterize Novice Java Programmers. Philippine
Journal of Science 138, 2 (2009), 177Ð190.

[11] Scherr, R. E., and Hammer, D. Student Behavior
and Epistemological Framing: Examples from Collabo-
rative Active-Learning Activities in Physics. Cognition
& Instruction 27 , 2 (Apr-Jun2009 April 2009), 147Ð174.

[12] Schwartz, D. L., Chase, C. C., and Bransford,
J. D. Resisting Overzealous Transfer: Coordinating
Previously Successful Routines With Needs for New
Learning. Educational Psychologist 47, 3 (2012), 204Ð
214.

[13] Spacco, J., Pugh, W., Ayewah, N., and Hove-
meyer, D. The Marmoset project: an automated
snapshot, submission, and testing system. In Compan-
ion to the 21st ACM SIGPLAN symposium on Object-
oriented programming systems, languages, and applica-
tions (New York, NY, USA, 2006), OOPSLA Õ06, ACM,
pp. 669Ð670.

[14] Spacco, J., Strecker, J., Hovemeyer, D., and
Pugh, W. Software Repository Mining with Mar-
moset: An Automated Programming Project Snapshot
and Testing System. In Proceedings of the Mining Soft-
ware Repositories Workshop (MSR 2005) (St. Louis,
Missouri, USA, May 2005).

[15] Tabanao, E. S., Rodrigo, M. M. T., and Jadud,
M. C. Predicting at-risk novice Java programmers
through the analysis of online protocols. In Proceed-
ings of the seventh international workshop on Comput-
ing education research (New York, NY, USA, 2011),
ICER Õ11, ACM, pp. 85Ð92.

[16] Van de Sande, C. C., and Greeno, J. G. Achiev-
ing Alignment of Perspectival Framings in Problem-
Solving Discourse. Journal of the Learning Sciences
21, 1 (2012), 1Ð44.

6/29/16, 3 !44 PMICER 2016 Submission 114

Page 1 of 6https://www.easychair.org/conferences/submission.cgi?a=11422828;submission=2759238

Help Log out
ICER 2016 (author)

My Submissions ICER 2016 News EasyChair

ICER 2016 Submission 114

Submission information updates are disabled.
For all questions related to processing your submission you should contact the
conference organizers. Click here to see information about this conference.
All reviews sent to you can be found at the bottom of this page.

Paper 114

Title: Reconstructing design thinking and learning through code snapshots and clinical interviews

Paper

Track: Research papers

Author keywords:

code snapshot systems
knowledge analysis
clinical interviews
design thinking

EasyChair keyphrases:

flight number (670), departure airport (460), arrival airport (410), stop code (350), travel day
(250), check day (250), stop flight (235), check time (230), stop city (190), hour stop (190),
airport code (170), letter stop (160), d min stop (126), departure city (110), arrival city (110),
rebecca code (90), basic programming (80), code snapshot (70), student code (70), d hour
stop (63), flight database project (63), departure input airport (63), stop flight code (63),
fantasy football (60), arrival time (60), flight database (60), departure time (60), rebecca
design (50), arrival code (50), computer science education (47)

Abstract:

This paper combines two existing research methods—code snapshots and clinical interviews
— to understand how a student’s design and and learning evolve in a university introductory
programming course for engineers. Historically, clinical interviews have proven very useful
for understanding the structure and dynamics of student knowledge (Sherin, 2013; Smith,
diSessa, & Roschelle, 1993). But, in computing education the constraints of interviewing
make it hard to resolve the fine-grain changes students may make to code over time. On the
other hand, code-snapshotting systems (Blikstein et al., 2014; Jadud, 2006; Spacco et al.,
2006) are very well-suited to resolve those kinds of changes, but they have historically been
used to look between students for groupwise effects and correlations, rather than within
students to trace the evolution of code as a design artifact. The case study we present uses a
knowledge-in-pieces perspective (diSessa, 2002, 2006) to analyze more than 900 compile-
time snapshots and more than 5 hours of clinical interview data and reconstruct a student’s
design thinking over the trajectory of a multi-week programming project. We argue that
augmenting snapshots with interview data offers substantial explanatory power for
understanding how a student’s design choices reflect their design thinking and learning.

Time: Apr 16, 04:55 GMT

Authors

first
name

last
name email country organization Web

page corresponding?

Brian Danielak briandaniela.k+easychairconference@gmail.com United
States

Michigan
State
University

✔

Update authors

https://www.easychair.org/
https://www.easychair.org/help/article.cgi?a=11422828;track=147842
https://www.easychair.org/account/signout.cgi?track=147842;a=11422828
https://www.easychair.org/conferences/conference_info.cgi?a=11422828;track=147842
https://www.easychair.org/conferences/submission_download.cgi?submission=2759238;track=147842;a=11422828;file=51799
https://www.easychair.org/conferences/author_update.cgi?track=147842;a=11422828;paper=2759238

6/29/16, 3 :44 PMICER 2016 Submission 114

Page 2 of 6https://www.easychair.org/conferences/submission.cgi?a=11422828;submission=2759238

William Doane wdoane@ida.org
United
States

Institute for
Defense
Analyses

Reviews

Review 3

Overall evaluation: 4: (Borderline, lean to accept)

Summary of paper:

The authors describe a case study (of one student) where they are trying to develop accounts
of students' programming activity that explain the form and evolution of their code on a
design project. They use ethnographic observation clinical interviewing, and code snapshot
analysis to examine a student's design choices on a coding project.

Discussion of related
work:

4: (covers key related work; its relationship to submission is described, but could be extended
further)

Theoretical basis for
the paper:

4: (theoretical basis obvious, with some citations and argument for how it is applied in the
research)

Use of theory:

The authors cite various works that are related to their study. They motivate their work by
explaining the current state of the world in the context of code snapshot review, and talk
about the pros and cons of using this kind of data to interpret information about users and
their needs.

Research
methodology:

2: (questionable choice of research approach and methods)

Exposition of
research methods:

3: (data collected and analyzed, but some aspects unclearly described)

Discussion of results
and conclusions:

3: (plausible interpretation of Þndings)

Methodology and
empirical basis:

Overall, it is very clear what the authors did in this study Ð they analyzed the work Rebecca did
for one of her projects using code snapshots and augmenting that information with
interviews. The data is rich and well described.

One concern the reviewer has is that this is a case study of *one* individual, so it is unclear
how what we learned from Rebecca can generalize. However, the contribution of the paper is
partly the method in which this study was conducted and demonstrating how it can be
beneÞcial to use di ! erent sources of information to triangulate on interpretations and
conclusions about a learners' coding process and issues they may have run into.

Another concern is the (lack of) description of how Rebecca was chosen to be the subject.
According to the authors, there were 3 other students who participated in the study. What
happened to their data? Why exactly was Rebecca chosen and not the others? One major
concern is whether or not Rebecca is representative of other students. This leads to the
question of whether the method described in the paper to analyze Rebecca's work and
interview her would work with other students?

Contribution and
relevance to the
international
computing
education research
Þeld:

3: (minor contribution or contribution is bound to a local context, perhaps with the promise of
more to come)

SigniÞcance of
contributions/results

The contribution of this paper is not the generalizability of the analysis of one student's data,
but the process in which the authors conducted the analysis, which included pseudo-
ethnographic participation in the students' course, code snapshot review, and interviews. This
was an interesting analysis that went deep into one student's actions in creating a project for
her class, and the authors' attempt in creating/interpreting meaning from her actions.

6/29/16, 3 !44 PMICER 2016 Submission 114

Page 3 of 6https://www.easychair.org/conferences/submission.cgi?a=11422828;submission=2759238

: The reviewer is still somewhat concerned about the case study only following one person's
work on one speciÞc project. Also, the reviewer would have liked to have seen more
discussion and suggestions about insights that the authors had while taking their approach in
analyzing Rebecca's data, and more information about future directions that this can take,
especially for wider scale use (is this kind of analysis even scalable?).

Writing and
expression:

5: (exemplary writing that enhances the quality of the paper)

Suggestions
regarding the
writing or other
comments:

The reviewer would classify what the authors claim as "ethnography" as pseudo-ethnography.

The paper is well written and easy to follow. The reviewer applauds the authors for taking the
time to edit and iterate on the paper Ð it really shows in the quality of the writing.

There were a few places where text was misaligned. Possibly due to Latex formatting issues.
There were some orphan lines (e.g., "... it's much harder to answer questions such as:"). Next
to Figure 2-1, there is a "the" ßoating to the right of the image. T". This also happens in
"...from a previous semester's project.

The Þgure that appears between Figure 2 and 3 should have its own Figure number and
caption.

Review 2

Overall evaluation: 4: (Borderline, lean to accept)

Summary of paper:

The author argues that there are research questions that cannot be answered by mining code
snapshot data, and backs up that assertion by showing how an approach involving subject
interviews illuminated code-design issues that would not have been apparent by looking at
snapshots of code alone.

Discussion of related
work:

4: (covers key related work; its relationship to submission is described, but could be extended
further)

Theoretical basis for
the paper:

3: (there is a theory there, but its relevance to the research is vague)

Use of theory:

This section of the review form is not a good match for the paper. The author makes su ! cient
references to the literature on mining of code snapshots to make the point that there are
questions the approach cannot answer. It is then shown how one such design-related
question *can* be answered by supplementing code snapshots with more traditional
ethnographically oriented methods. Thus, there isn't really a *theory* being used here, but the
point is being made via demonstration.

Research
methodology:

3: (research approach and methods well-suited for the research questions/hypotheses)

Exposition of
research methods:

4: (data collected and analyzed; methods clear and thoroughly described)

Discussion of results
and conclusions:

3: (plausible interpretation of Þndings)

Methodology and
empirical basis:

The evaluation rubric once again fails to adequately capture this paper. The author's
ethnographic exploration is rigorous and well informed, and it is nicely supplemented with
information from code snapshots. In that sense, the research methodology is well suited to
the research question being asked. (Namely, "can code snapshots be used -- possibly in
synthesis with ethnographically-oriented methods -- to start studying how studentsÕ design
thinking plays a role in their introductory programming work?") On the other hand, it's not
surprising that there are research questions that cannot be adequately answered via code
snapshots alone. (Or, that including code snapshots with other avenues of inquiry can yield
valuable insights.)

Contribution and

6/29/16, 3 !44 PMICER 2016 Submission 114

Page 4 of 6https://www.easychair.org/conferences/submission.cgi?a=11422828;submission=2759238

relevance to the
international
computing
education research
Þeld:

3: (minor contribution or contribution is bound to a local context, perhaps with the promise of
more to come)

SigniÞcance of
contributions/results
:

As mentioned above, the author does a nice job of pointing out how code snapshots can work
in conjunction with other avenues of inquiry to answer research questions that cannot be
answered via snapshots alone -- in particular, questions about student design processes. But
the subject interviews alone would have revealed much of the story of Rebecca's project
design, so it doesn't seem like supplementing the interviews with code snapshots added much
value. The paper would have much greater impact if it found a way to reduce the time and
expense of ethnographic approaches by combining them with the automation and scale that
comes with snapshot mining.

Writing and
expression:

4: (well written and expressed)

Suggestions
regarding the
writing or other
comments:

I'm sympathetic to the argument that much is lost in the dash to "big data" analysis
approaches of student work traces. I think the paper would be stronger if you highlighted
ways in which code snapshots could improve more traditional research approaches, or in
which the data-mining approaches could make it easier to do the ethnographic work.

The Þgures are illegible.

Review 4

Overall evaluation: 3: (Borderline, lean to reject)

Summary of paper:

META-REVIEW: ICER meta-reviews are entered when appropriate to provide additional context
for interpreting paper reviews, to capture program committee deliberations, and to direct
authors' attention to the most salient points. Meta-reviews are not intended as an
independent review, but rather account for all aspects of the program decision process. The
overall evaluation score in this review reßects this Þnal judgement.

NOTE: Individual element scores on a meta-review are all given values of 1 and are
meaningless placeholders due to limitations of EasyChair.

Meta-reviewer comments are provided in the last Þeld of the review form.

Discussion of related
work:

1: (no discussion of related work)

Theoretical basis for
the paper:

1: (no obvious theory being applied)

Use of theory: .

Research
methodology:

1: (research approach and methods inappropriate for research objectives)

Exposition of
research methods:

1: (no empirical data collected)

Discussion of results
and conclusions:

1: (unjustiÞable interpretation of Þndings)

Methodology and
empirical basis:

.

Contribution and
relevance to the
international
computing
education research
Þeld:

1: (contributes little or nothing to computing education research)

6/29/16, 3 !44 PMICER 2016 Submission 114

Page 5 of 6https://www.easychair.org/conferences/submission.cgi?a=11422828;submission=2759238

SigniÞcance of
contributions/results
:

.

Writing and
expression:

1: (extremely poorly written; hard to understand)

Suggestions
regarding the
writing or other
comments:

META-REVIEW: We value the research direction of this paper. Examining some of the
underlying rationale for programming decisions by novices through an in-depth analysis of
program snapshots and clinical interviews appears to be a fruitful path to take, and one that
will add to the existing discourse in CS Ed. There was support from all of the reviewers for
acceptance, though it was borderline in all cases.

As a result of its resting on the border, the paper generated considerable discussion among
meta-reviewers. We had a few key concerns that tipped us into rejecting this paper, concerns
that we encourage you to address in the future. Your research question is about method, with
the suggestion that including the interview data will, in general, be illuminating. As a result,
the paper undermines itself, because there is no research question in CS Ed concerning (say)
novice programming, or programmer cognition that is informed by your methodological
choice and its associated analysis. This thus makes your choice of the case that is discussed
in depth to appear ad-hoc, i.e. we did not know Òwhy this case, rather than any other?Ó. In
addition, there is no reference to prior research related to discourse about relevant matters in
CS Ed. This, along with such things as explaining big-O, lead the meta-reviewers to believe
that this paper was not targeted to the ICER audience.

In sum, we would like to encourage you to continue this important line of work. But rather
than leaping to a methodological argument, we think that you can directly inform a research
question of interest to the ICER community. We think that you would beneÞt by participating
in the ICER Works-in-Progress workshop, where the other participants in the workshop can
help provide links to the existing discourse. By altering your argument to address the
concerns above, we think you could make important contributions to the CSER literature in the
future.

Review 1

Overall evaluation: 4: (Borderline, lean to accept)

Summary of paper:
This paper dives deep into an ethnography of a single student working on a single
programming, using log data and interviews. The richness of the story is fantastic and reveals
the kind of story that usually is known only by a student herself and/or her TAs.

Discussion of related
work:

4: (covers key related work; its relationship to submission is described, but could be extended
further)

Theoretical basis for
the paper:

1: (no obvious theory being applied)

Use of theory:
This is an ethnographic study with grounded observations. There's no need for much theory
here.

Research
methodology:

3: (research approach and methods well-suited for the research questions/hypotheses)

Exposition of
research methods:

4: (data collected and analyzed; methods clear and thoroughly described)

Discussion of results
and conclusions:

5: (incisive interpretation of Þndings and limitations)

Methodology and
empirical basis:

Everything is gone into such incredible detail, utilizing the depth of information from the log
data along with interviews provides awesome insight into what the student "Rebecca" was
thinking when she worked on the assignment.

Contribution and
relevance to the

6/29/16, 3:44 PMICER 2016 Submission 114

Page 6 of 6https://www.easychair.org/conferences/submission.cgi?a=11422828;submission=2759238

international
computing
education research
field:

3: (minor contribution or contribution is bound to a local context, perhaps with the promise of
more to come)

Significance of
contributions/results
:

I like the depth of the understanding of how the student solved her assignment, but OMG, the
amount of effort required to get this kind of story cannot scale. Even just getting a classroom
of students observed and analyzed might require an army of ethnographically-trained
graduate students!

I agree with the author's frustration with prior research because of its focus on the
quantitative aspects of their data despite having the potential to discover rich experiences.
But, there's got to be an incremental step here. Can you tell part of this story through
automated mining of the data stream or does it require a human touch? This would make a
great PhD dissertation if you've got any students available to work on it. :)

Writing and
expression: 5: (exemplary writing that enhances the quality of the paper)

Suggestions
regarding the
writing or other
comments:

Everything was super clear except for the screenshots and code shots. Those are way way too
small and are impossible to read.

Copyright © 2002–2016 EasyChair

6/29/16, 3 :45 PMSample review process | ICER Conference

Page 1 of 4http://icer.hosting.acm.org/general-info/sample-review-process/

Sample review process

The template below is provided to help guide reviewers and

authors during the reviewing process. You may also find it helpful

to review the tips for authors and reviewers.

NOTE: Actual reviews should be completed using the EasyChair

system. Reviewers will receive a link via email when papers have

been assigned.

Review Template

1. Overall evaluation

6: I strongly support accepting this paper

5: I would argue for accepting this paper

4: Borderline, lean to accept

3: Borderline, lean to reject

2: I would argue to reject this paper

1: I strongly recommend rejecting this paper

2. Reviewer’s confidence

3: (high)

2: (medium)

1: (low)

3. Summary of Paper (*)

Provide a 1-2 sentence summary of the work in your own

words. We use this to verify that reviews are entered for the

correct submission.

4. Discussion of related work

5: all relevant work discussed and cited, and

Search

General Info�� For Authors�� For Attendees��

For Reviewers�� All ICER Conferences��

�

http://icer.hosting.acm.org/general-info/sample-review-process/tips.html
http://icer.hosting.acm.org/
http://icer.hosting.acm.org/general-info/sample-review-process/#
http://icer.hosting.acm.org/general-info/sample-review-process/#
http://icer.hosting.acm.org/general-info/sample-review-process/#
http://icer.hosting.acm.org/general-info/sample-review-process/#
http://icer.hosting.acm.org/general-info/sample-review-process/#

6/29/16, 3:45 PMSample review process | ICER Conference

Page 2 of 4http://icer.hosting.acm.org/general-info/sample-review-process/

relationship to submission clearly and thoroughly

described

4: covers key related work; its relationship to

submission is described, but could be extended

further

3: some references missing, or relationship to

submission not clearly described

2: several important or key reference(s) missing, and

relationship of references to submission not

apparent

1: no discussion of related work

5a. Theoretical basis for the paper

5: clear and strong theoretical basis, well

documented with citations and clearly applied in the

research

4: theoretical basis obvious, with some citations and

argument for how it is applied in the research

3: there is a theory there, but its relevance to the

research is vague

2: maybe there’s a theory there, but it is vague and

has no clear relevance to the research

1: no obvious theory being applied

5b. Use of Theory (*)

Discuss the appropriateness and quality of the theoretical

framework for addressing the explored research topic.

6a. Research methodology

3: research approach and methods well-suited for

the research questions/hypotheses

2: questionable choice of research approach and

methods

1: research approach and methods inappropriate for

research objectives

6b. Exposition of research methods

6/29/16, 3:45 PMSample review process | ICER Conference

Page 3 of 4http://icer.hosting.acm.org/general-info/sample-review-process/

4: data collected and analyzed; methods clear and

thoroughly described.

3: data collected and analyzed, but some aspects

unclearly described.

2: data collected and analyzed, but unclear or

inadequate description.

1: no empirical data collected

6c. Discussion of results and conclusions

5: incisive interpretation of findings and limitations

4: good interpretation of findings; limitations

considered

3: plausible interpretation of findings

2: questionable interpretation of findings

1: unjustifiable interpretation of findings

6d. Methodology and Empirical Basis (*)

Discuss the appropriateness and quality of the chosen

methodology. Evaluate the way authors have applied the

research, interpreted their findings and drawn conclusions.

Comment on whether the findings have been examined in the

context of related work and the limitations of the research.

7a. Contribution and its relevance to the international

computing education research field

5: a major and significant contribution to the field

that explicitly presents results in a manner directly

applicable to international research contexts

4: a clear contribution to the field

3: minor contribution or contribution is bound to a

local context, perhaps with the promise of more to

come

2: no obvious contribution, but the promise of future

value

1: contributes little or nothing to computing

6/29/16, 3:45 PMSample review process | ICER Conference

Page 4 of 4http://icer.hosting.acm.org/general-info/sample-review-process/

education research

7b. Significance of Contributions/Results (*)

Make a case for the importance of this finding for our

community (or indicate your views if you believe it not so

important). We hopefully have a number of high-quality

papers, and your input on what is important for our

community matters.

8a. Writing and expression

5: exemplary writing that enhances the quality of the

paper

4: well written and expressed

3: not well written, but could probably be made

acceptable

2: very poorly written; unlikely that it can be

improved enough

1: extremely poorly written; hard to understand

8b. Suggestions regarding the writing or other comments

If you would like to draw particular aspects of the writing to

the authors’ attention and/or make any further

recommendations, please do so here. If you have any further

references to recommend, please add them here.

Designed by Elegant Themes | Powered by WordPress

http://www.sigcse.org/
http://www.acm.org/
http://www.elegantthemes.com/
http://www.wordpress.org/

	Introduction
	Context and Methods
	Context of the study
	Methods

	Analyzing only the code Rebecca turned in
	Rebecca's file-scanning solution is hard to read and has high time-complexity
	Rebecca's file-scanning solution has elegant constant space complexity
	Rebecca's file-scanning solution ignores an assignment directive
	Rebecca repeats the same chunk of code seven times

	Augmenting Code Snapshots with Interview Data
	Rebecca employed fscanf loops because she was deliberately reusing from an Basic Programming Assignment.
	Rebecca repeated code because she wanted to re-use functionality she could trust

	Conclusion
	Acknowledgments

