
Expanding Models of Cognition within Computing

Education Research

Authors Blinded For

Review

ABSTRACT
CCS Concepts
•Social and professional topics ! Computing educa-

tion;

Keywords
1. ABSTRACT

This paper aims to expand our sense of what’s possible
in modeling cognition within computing education research.
We argue that research approaches that privilege canonical
knowledge do so at the expense of other productive knowl-
edge and ways of knowing that students have. We explore
applicable cognitive theory by showing how distributed cog-
nition and symbolic forms can be a powerful framework for
analysis in CSEd. Finally, we conclude with an exploration
of epistemological concerns, arguing that a fundamental con-
cern for our research community should be paying attention
to what counts as knowledge and knowing in computing
learning environments.

2. INTRODUCTION
Science and math education started challenging miscon-

ception models of mind in 1993 [7, 42]. By 1996, learning
scientists were boldly repudiating the assumptions of mis-
conceptions: “Not all thoughts students express need to be
understood as directly reflecting stable, stored knowledge
structures. What the misconceptions perspective treats as
a stored construct may alternatively be treated as an act of
construction.” [17]. In the more than 20 years since those
papers were published, researchers—particularly in science
education—have pushed cognitive models beyond the static
assumptions of classical misconception accounts of knowl-
edge. But, a preponderance of research in computing educa-
tion (CSEd) has modeled and continues to model cognition
through misconceptions. Such research assumes students
have entrenched, wrong ideas about computation. And,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ICER 2016 Melbourne, Australia

c� 2016 ACM. ISBN 123-4567-24-567/08/06. . . $15.00

DOI: 10.475/123_4

while misconceptions research in computing education has
advanced our understanding of teaching and learning, its
narrow focus also begets problems that are growing too big
to ignore:

1. When we use misconceptions to treat student ideas as
right or wrong, we establish and perpetuate a deficit
model of student understanding.

2. The more classical misconceptions-based research we
publish as a community, the stronger that deficit nar-
rative becomes in our discourse.

This paper aims squarely at those problems by expanding
a sense of what’s possible in modeling cognition within com-
puting education research. We argue research approaches
that inflexibly privilege canonical knowledge do so at the
expense of other productive knowledge and ways of knowing
that students have. First, we reanalyze prior data to show
how we might recast misconceptions as the potential seeds of
productive knowledge. We then argue through example that
expertise in programming can involve the fluid and active
construction of conceptual metaphors to deal with idiosyn-
crasies within and across programming languages. These ex-
amples help broaden our sense of applicable cognitive theory
by showing how distributed cognition and symbolic forms
can be a powerful framework for analysis in CSEd. Finally,
we conclude with an exploration of epistemological concerns,
arguing that a fundamental concern for our research commu-
nity should be paying attention to what counts as knowledge
and knowing in computing learning environments.

2.1 Misconceptions research in computing ed-
ucation tends to ignore students’ produc-
tive knowledge

In the past three decades, educational research has had a
marked focus on students’ misconceptions in programming.
It’s a focus with a sensible origin. Students get things wrong
in programming — often systematically so — and in ways
that seem resistant to instruction. The cause of those errors
is theorized to be something cognitive, whether it’s a “bug”
[37, 35, 46], a “misconception” [1, 3, 4, 15, 22, 29], a “belief”
[12], or a“student-constructed rule” [11, 13] in programming.
Instruction, Clancy argues, should try to identify, address,
and correct these misconceptions because they can represent
barriers to learning [4].

How that line of thinking and research becomes prob-
lematic is two-fold. First, when taken in total the alleged
brokenness of student knowledge begins eclipsing all else in
studying the cognition of learning to program. In other

10.475/123_4

words, most cognitively-focused educational research in com-
puter science treats students as having varied degrees of defi-
ciency with respect to canonical knowledge. Below is an un-
ordered, partial sampling of topics about which researchers
have documented students’ misconceptions. Note across the
list the variation in both the grain sizes of students’ mis-
conceptions and the programming languages in which they
manifest:

• Objects in object-oriented programming [23]
• Algorithms and data structures [5, 34]
• Programming statements in BASIC [1]
• Programming in Java [13]
• Programming in Pascal [12]
• Parameter-passing [11]
• Arrays in Java [29]
• Objects in Java [29]
• Algorithms and computational complexity [45]
• Boolean logic [22]
• The e�ciency of algorithms [15]
• The Build-Heap algorithm [40]
• Hashtables [33]
• The correctness of programs [30]
• Polynomial and mapping reduction in the Theory and

Computation of Complexity [14]

Clancy [4] provides a comprehensive overview of this line
of research, though in the past decade it has only grown.
Indeed, roughly half the articles above were published in
the ten years since Clancy’s overview.
Identifying and removing barriers to student learning seems

like a good thing. So, it should follow that cataloging stu-
dent misconceptions and developing remedies for them should
also be a good thing. But, the logical implication isn’t that
clean. In some cases students display productive, useful
knowledge that’s either ignored or outright criticized by re-
searchers. Aligning students toward canonical knowledge
makes sense, but doing so at the expense of—or in direct
contradiction to—useful ways of knowing seems undesirable
at best. Next, we expand on two examples from misconcep-
tions research in programming. Specifically, we show how
and why we think a misconceptions focus in programming
casts aside students’ useful intuitions and understandings.
The first example comes from [29]. Part of that study

involved giving students snippets of Java code and asking
students to diagram (or pseudo-code) how the information
would be stored in memory. Below we have reproduced the
code for Problem 2:

1 Cheese[] cheeses = new Cheese[4];

2 Meat[] meats = new Meat[2];

3 Turkey turkey;

4 Ham ham;

5 RoastBeef roastBeef;

6 boolean lettuce = true;

7 boolean tomato = true;

8 SauceType sauceType = new SauceType();

9 int numMeat;

10 int numCheese;

In diagramming this information, a student in the study
makes a mistake:

Student3 makes incorrect assumptions about con-
nections between variables to the extent that the

student makes a mistake concerning the types
of the variables. As a result, the student places
Objects of di↵erent types in an array whose type
matches none of them: “And so because there’s
two arrays, cheese and meats, uh, all those turkey
and ham and roast beef are gonna be sorted into
the meats array.” [29]

The researchers are correct in the sense that turkey and
ham and roastBeef will not be sorted into the meats ar-
ray. First, there is no code here that places turkey and ham

and roastBeef in the array; there is only code that declares
them as variables. Moreover, as written, an attempt to place
turkey and ham and roastBeef into the array would fail.
Because of type restrictions in Java, only objects of class
Meat (or objects that inherit from class Meat) can go in the
array. turkey and ham and roastBeef are, perhaps confus-
ingly, references to object instances of classes Turkey and
Ham and RoastBeef, so in the current snippet they cannot
enter an array of type Meat because (1) they don’t yet exist
as objects and (2) even if they did exist, their types don’t
match the array’s type. The authors call this misconception
semantics to semantics, which occurs “when the student in-
appropriately assume[s] details about the relationship and
operation of code samples, although such information was
neither given nor implied” [29].

Again, the researchers are right that the student is failing
to describe the code in a way consistent with canon. But, in
their non-canonical thinking Student3 evidences potentially
“productive” [18, 19] insights about design. Precisely because
there is no code stating that turkey and roastBeef and ham

are sorted into the array, the student is inferring that to
be true. And, while that behavior is not what’s happening,
it would be sensible to design a program where specific in-
stances of classes Turkey and Ham and RoastBeef could go
into an array of type Meat. To do so, a designer could define
Turkey and Ham and RoastBeef as inheriting from Meat.

Put another way, it’s true Student3 has an idea about a re-
lationship between entities that is not specified in the code.
The study authors focus only on the downside of the idea:
the student fails to display a proper understanding of how
arrays work in Java. But, there is also an upside of this idea.
Because Student3 is thinking about real-world propositions
like turkey and ham being kinds of meat, they might be pre-
pared to appreciate and discuss an object-oriented way to
put turkey in a Meat array. But, that possibility is specula-
tive conjecture. We can’t know for certain whether Student3
could be tipped into a productive object-oriented design ac-
tivity around the meats example because that question was
not a focus of the research.

Our second example of research that criticizes students’
non-canonical understandings comes from Bonar and Soloway’s
1983 study of Pascal programmers [2], data from which is
also analyzed and discussed in [35]. A student in [2] was
asked to “Write a program which reads in ten integers and
prints the average of those integers”(Bonar & Soloway, 1983,
p. 12). In pseudo-code, she wrote:

Repeat

(1) Read a number (Num)

(1a) Count := Count + 1

(2) Add the number to Sum

(2a) Sum := Sum + Num

(3) until Count :=10

(4) Average := Sum div Num

(5) writeln (’average = ’,Average)

The interviewer then asked whether (1a) and (2a) were
“the same kinds of statements.” That interchange is repro-
duced here:

Interviewer: Steps 1a and 2a: are those the same
kinds of statements?

Subject: How’s that, are they the same kind.
Ahhh, ummm, not exactly, because with this
[1a] you are adding - you initialize it at zero and
you’re adding one to it [points to the right side
of 1a] which is just a constant kind of thing.

Interviewer: Yes

Subject: [points to 2a] Sum, initialized, to, uhh
Sum to Sum plus Num, ahh - thats [points to
left side of 2a] storing two values in one, two
variables [points to Sum and Num on the right
side of 2a]. That’s [now points to 1a] a counter,
that’s what keeps the whole loop under control.
Whereas, this thing [points to 2a] was probably
the most interesting thing. . . about Pascal when
I hit it. That you could have the same, you sorta
have the same thing here [points to 1a], it was
interesting that you cold have, you could save
space by having the Sum re-storing information
on the left with two di↵erent things there [points
to right side of 2a], so I didn’t need to have two.
No, they’re di↵erent to me.

Interviewer: So - in summary, how do you think
of 1a?

Subject: I think of this [point to 1a] as just a
constant, something that keeps the loop under
control. And this [points to 2a] has something
to do with something that you are gonna, that
stores more kinds of information that you are
going to take out of the loop with you. [2]

Pea and Kurland’s interpretation? “Here, again, we see
the student believing that the programming language knows
more about her intentions than it possibly can” [36].

As in Example 1, this student has an idea about relation-
ships in code. Pea and Kurland [36] see the downside of
her idea: believing PASCAL can understand shades of pro-
grammer intent when, in fact, it cannot. And again, that
downside is real. It could cause trouble for this programmer
later on if she expects PASCAL to interpret her intent and
it cannot.

In defense of the student, the question — as asked —
is vague. Are those statements the same to whom and in
what way? Pea and Kurland treat the data as though she
meant “the same to PASCAL.” Indeed, maybe she did, in
which case his interpretation has traction. But, another
interpretation is that she meant to herself or to someone
else reading the code. Those statements might not be the
same to her because she treats (1a) as having a function
of controlling iteration while (2a)’s job is to combine two
numbers into a new sum.

These two purposes, which for the sake of description we’ll
call keeping control (1a) and totaling up (2a) are, in a sense,
di↵erent. The PASCAL compiler (and runtime) does not

di↵erentiate them, but humans can. And, humans may well
want to di↵erentiate them. diSessa (1986) describes exactly
this kind of di↵erentiation as a consequence of separating the
structural understanding of a programming language from
a functional understanding of a language. As an example,
he discusses the structure/function di↵erence with respect
to variables:

The structural aspects of a variable in a com-
puter language are given primarily by the rules
for setting their values and for getting access to
their values. These rules apply in all contexts.
In contrast, a variable’s functions might vary.
Sometimes they might be described as “a flag”
or more generally, as “a communications device.”
At other times a variable might function as “a
counter,”“data,” or “input.” [6]

The student in [2] did not show evidence of understand-
ing the structural similarities between (1a) and (2a) in her
pseudo-code. And, those authors as well as others [36] justly
insist that similarity is important for students to under-
stand. From a conceptual standpoint, seeing the structural
similarity constitutes a part of “knowing” PASCAL. But,
even if knowing PASCAL were not the goal, seeing the simi-
larity helps one to take the perspective of a computing agent
that has no means for discerning programmer intent. Such
perspective-taking may help students avoid mistakes that
arise from over-assuming what a computer “understands.”

The student did, however, show evidence of understanding
a functional [6] di↵erence between (1a) and (2a), but Pea
and Kurland do not remark on that kind of understanding at
all. Both [36, 2] also gloss over another important di↵erence:
a programmer might not know in advance which numbers are
being passed in to the sum statement. So, in advance the
programmer can say nothing about how the value of Sum

will change as the loop iterates. In contrast, the programmer
knows exactly how the value of Count will change with each
loop iteration. Again, we claim this oversight is part of a
subtle but observable trend in programming misconceptions
literature.

While, or perhaps because research has been so preoccu-
pied warring with students’ problematic knowledge, it has
sometimes failed to recover the productive knowledge (or
resources for building it) students have. In Example 2, the
student already has a grasp that syntactically similar state-
ments could serve di↵erent conceptual purposes. And, that
understanding could, in turn, shape how they program. The
student might invoke the 2 = 2 + 1 syntactical template
(Or what Sherin would call “symbol template” [41]) when
the situation seems to demand keeping control, while invok-
ing 2 = 2+ number when totaling up is the goal. And, the
idea that structurally similar symbol templates can serve
di↵erent functional and conceptual purposes fits precisely in
line with both diSessa’s distinction of structural/functional
understanding of a programming language [6] and Sherin’s
theory of symbolic forms [41].

An example drives home the connection between [6] and
[41] as it applies to programming. The symbolic forms parts-
of-a-whole and base+change have di↵erent conceptual schemata.
Parts-of-a-whole refers to the contributions of component
entities while base+change describes a kind of accumulation
[41]. Specifically, the terms in base+change “contribute to a
whole but play di↵erent roles. One is a base value; the other

is a change to that base.” But, the two distinct conceptual
schemata share what we would argue is the same symbolic
structure: 2 = 2 + 2 (parts of a whole) and 2 = 2 ± �
(base + change) [41].

The problem, for learning to program, comes in needing
to fluidly interpret and write code in languages that may
demand incommensurable, or at least distinct, conceptual
schemata. As we show later in Table 4, three current pro-
gramming languages make remarkably di↵erent use of the
plus sign (+) as an operator. Crucially, some of the entailing
ways to make sense of how + works in those languages don’t
exist in Sherin’s (2001) catalog of conceptual schemata. In
other words, we would argue there are conceptual ways a
programmer may need to think about interpreting or writ-
ing a 2 = 2 + 2 symbol template that even Sherin [41]
doesn’t enumerate.One of the most obvious, for example, is
the conceptual movement from seeing 2 = 2+2 as a state-
ment of equality (typical in a math class) to seeing it as the
assignment of a sum to a variable (typical in programming).
To follow that implication, the canonical body of knowledge
about which programmers must reason is itself fractured,
because di↵erent languages design their operations around
di↵erent symbolic and conceptual metaphors.

To return to misconceptions, what seems to drive research
on students’ misconceptions in computing education is largely
a need to get students to program computers and reason
about computation in ways that are canonically correct.
And, that’s a worthwhile goal. But, as we’ve argued, we
can already identify cases where a narrow misconceptions
focus is silent about (at best) or dismissive of (at worst) stu-
dents’ useful intuitions. We identified the further problems
when a unilateral emphasis on one language’s canon opposes
the vocabulary of symbolic forms (and diverse conceptual
schemata) expert programmers ultimately need. Taken in
total, that silence, dismissiveness, and narrow view of refin-
ing knowledge perpetuates a deficit-focused discourse about
student’s knowledge in computing. A knowledge-deficiency
perspective also fails to address what aspects of students
reasoning might get broken by attempts to “fix” such “mis-
conceptions”.

It’s important to note that misconceptions research in
computing didn’t always treat students’ non-canonical knowl-
edge as a problem. We begin the next section by back-
tracing to some of the earliest work on students’ cognitive
“bugs”. There, we find researchers talking more explicitly
about what’s useful in students’ non-canonical knowledge—
a stance largely absent in modern computing misconceptions
research.

3. CORE ARGUMENTS

3.1 Not all cognitive programming bugs imply
a problem with the student

What’s curious about Pea and Kurland’s [35] comments
on Bonar and Soloway [2] is that Pea’s conclusions [35] about
Bonar and Soloway’s data di↵ered greatly from Bonar and
Soloway’s conclusions. Pea emphasized that when the stu-
dent thought two semantically-equivalent assignment state-
ments in PASCAL were di↵erent, it was a problem of egocen-
trism: “students assume that there is more of their meaning
for what they want to accomplish in the program than is ac-
tually present in the code they have written” [35]. In other
words, Pea treated the data as a fairly clear example of a

class of cognitive bugs. Specifically, he saw a bug class in
which students simply assumed the interpreter or runtime
could infer programmer’s shades of intent.

Bonar and Soloway (1983), by contrast, were less quick
to make inferences either about the nature of the bug or
the intervention it entailed. Rather than jump to definitive
conclusions, they were circumspect:

It is not clear exactly how to react to the bugs we
have uncovered in novice understanding of pro-
gramming. In some cases it may be appropriate
to design new languages or constructs. Often,
better instruction would take care of the prob-
lem. The intent of our studies is to better un-
derstand the source of the mismatches and mis-
conceptions that cause novice bugs. Only once
a bug is uncovered and understood are we ready
to create a remedy for that bug. [2]

That Bonar and Soloway would even consider develop-
ing new constructs or languages is a noteworthy distinction.
Rather than assume wholesale that students with “bugs”
had wrong knowledge, the authors instead suppose cogni-
tive bugs have plausible origins worth designing around.
Moreover, they treat students’ divergence from canon as an
opportunity for research to learn from students. Precisely
because students saw functional di↵erences in semantically-
equivalent PASCAL statements, Bonar and Soloway [2] re-
flect that perhaps programming languages should be more
expressive:

We find it quite interesting that novices seem
to understand the role or strategy of statements
more clearly than the standard semantics. Such
roles discussed here include “counter variable,”
“running total variable,”“running total loop,”and
“first, then rest loop”. (See Soloway et al [1982b]
for a detailed discussion of novice looping strate-
gies.) Much work in programming languages is
concerned with allowing a programmer to more
accurately express his or her intentions in the
program. Perhaps we can learn something from
novices here - our programming systems should
support recording the roles the programmer in-
tends for various statements and variables. [2]

Again, what’s noteworthy is that rather than treating
students’ non-canonical views as a burden for instruction,
Bonar and Soloway instead see them as an opportunity for
programming language designers to make languages better.
Indeed, an empirical approach to language design has re-
cently been articulated in Stefik and Siebert’s work regard-
ing language syntax’s e↵ect on novices. [43]

That insight—that instruction and design can meet novices
where they are—carries through to Bonar and Soloway’s fi-
nal remarks about studying and analyzing novice program-
ming knowledge:

The experience and understanding of a novice are
available for analysis. In particular, our results
suggest that the knowledge people bring from
natural language has a key e↵ect on their early
programming e↵orts. Our work suggests that
we need serious study of the knowledge novices

bring to a computing system. For most comput-
erized tasks there is some model that a novice
will use in his or her first attempts. We need to
understand when it is appropriate to appeal to
this model, and, when necessary, how to move a
novice to some more appropriate model. (Bonar
& Soloway, 1983, p. 13)

We assume Bonar and Soloway structured the final line
of that quote deliberately. If so, their phrasing has three
consequences:

1. Appealing to novice’s existing models gets precedence.
That is, understanding how to leverage novices’ exist-
ing knowledge comes first in research.

2. Changing the models novices have comes next, and
explicitly “when necessary.”

3. They speak of “how to move a novice to some more
appropriate model,” which does not necessarily entail
rejecting a student’s existing model, treating it as a
misconception to be corrected, or otherwise ignoring
what productive elements are present in a given novice
model.

We believe that taken together, these points convey a
sense of how Bonar and Soloway [2] viewed learning and
instruction in computing. Instruction explicitly includes ap-
peals to prior models and knowledge students might already
have. Learning, meanwhile, involves the movement when
necessary to more appropriate models of computation. As
we explain in the next section, such a view of understanding
and refining student ideas—in contrast to diagnosing the de-
ficiencies in and replacement of student ideas—exactly aligns
with a particular branch of constructivism, where cognition
is viewed as the complex activation of manifold resources for
thinking and knowing.

3.2 Examples motivate the need for contextual-
sensitivity in modeling programming cog-
nition

Let’s begin with two motivating examples. Our aim with
these examples is to show how a practicing programmer
might employ specific, distinct conceptual models to reason
locally about a piece of code.

3.2.1 Example 1: Thinking With Kinematics Can Trans-

form a Debugging Problem

First, consider variants of the PASCAL statements from
Bonar and Soloway (1983), where an assignment statement
worked to increment a value and store the result back to that
value. Below are JavaScript statements that, as program-
mers, we have actually written in code as part of our careers.
Each statement adheres to the structural similarity in Bonar
and Soloway’s PASCAL example [2] discussed earlier. But,
the comment above each statement reflects the functional
understandings [6] we made use of to write, interpret, and
debug the code we were working on.

1 // Increment a counter

2 x = x + 1

3

4 // Advance a simulation forward

5 t = t + dt

6

7 // Move an object under uniform velocity

8 x_position = x_position + displacement

9

10 // Accelerate an object along the x-dimension

11 x_position = x_position + displacement(t)

12

13 // Jitter a plot point using a stochastic function

14 y_position = y_position + random_noise()

We stress the comments reflect how one might think about
each programming statement. By no means are we making
normative claims about how one ought to think about it, or
whether the statement actually does what its variable names
might suggest it does. Rather, “How we might think about
it” reflects the kind of local meaning or interpretation we
might attach to such a statement when we work with it,
given our understanding of its role and context.

Consider specifically what would happen if we found our-
selves needing to debug lines 2 and 11. Line 2 could very
well be an incrementer in some kind of iterative code. If
we had to debug loop code that employs line 2, what we
might do is try inserting intermediate print statements to
see the value of x. We might also call on our knowledge
that it’s being incremented by 1 to check whether the dif-
ference between any two successive printouts is 1; if it isn’t,
we immediately know something’s wrong. But to diagnose
a potential problem in line 11, we might take an altogether
di↵erent strategy.

In line 11’s case, it could very well be that line 11’s func-
tion is animating images on a screen. Suppose that’s the
case. If there’s a problem with that code, one of the easiest
ways we might notice is that the acceleration seems o↵ in the
animation. Consequently, in debugging we might call upon
knowledge we have from kinematics to conceptually model
what our code is doing. We might try inserting code that
draws a dot at the animated object’s on-screen position with
each iteration, leaving a trail of dots we can visually inspect.
We could then look at the path of the object’s trajectory and
the spacing patterns between successive dots as a first-pass
test of whether the code achieves the motion we want. (If,
for example, our code is supposed to achieve a cubic easing
animation, but the dots in the trail are all evenly spaced,
basic kinematics tells us our object isn’t accelerating at all.
And, if there’s no acceleration, we can pursue a strong hunch
that the displacement(t)) function is returning the same
constant value with each iternation.

To be clear, it’s not just that graphics might improve our
e�ciency in debugging a statement like line 11. Rather,
applying an interpretive frame that treats an assignment
statement as a kinematic position update lets us use concep-
tual knowledge from physics to diagnose and fix problems in
code. For a comparative perspective, consider Hutchins’s ar-
gument that for aircraft pilots, ringing an aircraft speedome-
ter with physical markers transforms the cognition involved
in landing a plane:

Without a speed bug, on final approach the PF
[Pilot Flying] must remember the approach speed,
read the airspeed indicator scale to find the re-
membered value of the approach speed on the
airspeed indicator scale, and compare the posi-
tion of the ASI [Airspeed Indicator] needle on the
scale with the position of the approach speed on
the scale. With the salmon bug set, the pilot no

longer needs to read the airspeed indicator scale.
He or she simply looks to see whether or not the
indicator needle is lined up with the salmon bug.
Thus, a memory and scale reading task is trans-
formed into a judgment of spatial adjacency. [25]

Our physics debugging example and Hutchins’s speed bug
example [25] share two core traits:

1. Cognition gets distributed [26, 24] across time and space.
2. That distribution doesn’t simply enhance, but rather

transforms the nature of the activity, allowing cogni-
tive agents to bring to bear resources that the prior or
original context didn’t a↵ord.

In Hutchins’s [25] example, pilots distribute cognition across
time (1) by making approach speed calculations mid-flight,
well before they’re needed. Pilots then distribute those cal-
culations across space (2) by ringing the speedometer with
bugs to represent distinct speeds. And, it is this act of dis-
tribution that lets pilots use spatial-adjacency perception
(visually making sure the needle is on the bugs) during ap-
proach instead of having to calculate, compute, and compare
speed numbers during approach.

In our kinematics debugging example, cognition gets dis-
tributed across time and space (1) by creating a visual trace
of the animated object’s position (a persistent trail of dots).
And, it is this act of dot-tracing that lets a programmer
invokve spatial-adjacency perception and conceptual kine-
matics knowledge (how positions uniformly sampled in time
can reflect constant velocity vs. acceleration) that wouldn’t
seem applicable if the reassignment statement were stripped
of its context.

the cognitive act of debugging in this instance. There, For
comparison, consider

If we view the assignment statement as proposing some-
thing about the motion of an object—as, for example, when
sense-making in science and engineering students can view
equations as“saying something”about how a system behaves[blinded]—
a field of knowledge and concomitant techniques from physics
become available to me to think with. But, if we focus only
on the semantic-level equivalence of statements 1 through 5,
there would be no obvious reason for me to access what we
know about physics in order to reason about the code.

3.2.2 Example 2: The Plus Sign Means Lots of Things

Our second example concerns statements that use the
same symbol template for fundamentally di↵erent kinds of
computation. In our JavaScript example statements, all
code came from the same language. But, another phe-
nomenon comes into play across di↵erent languages when
they use the same symbology (written patterns) to stand
for conceptually di↵erent operations. The statements be-
low are examples of what look like semantically-equivalent
operations, but in fact are not.

// C - Increments the value of i by 1

i = i + 1

// JavaScript - Appends "ly" to word.toString()

word = word + "ly"

R/ggplot2 - Composes a layer of points onto a plot

p = p + geom_point()

The catch here is that the plus operator takes on di↵er-
ent roles in di↵erent languages because of how those lan-
guages define its use. Statement 1 increments a number in
C; Statement 2 appends the letters “ly” to a string; State-
ment 3 composes a layer of points onto a statistical graphics
plot. These di↵erent kinds of operations become even more
apparent and consequential when, for example, such state-
ments are repeated in the same language within the same
file, as we’ll see in Example 3.

3.2.3 Example 3: The Same Symbol Template Within
The Same Language Can Still Mean Different

Things

In the R/ggplot2 code below, the author uses multiple
reassignment statements to compose a statistical graphics
plot.

1 p = InitializeGgplot_1w()

2 p = p + GrandMeanLine(owp)

3 p = p + GrandMeanPoint(owp)

4 p = p + ScaleX_1w(owp)

5 p = p + ScaleY_1w(owp)

Despite the syntactic similarity, The layered creation of a
plot invites a very di↵erent kind of conceptual interpretation
than, say, repeatedly accumulating numbers into a running
sum. One obvious reason for thinking about this code with
a di↵erent interpretive frame than incrementation is that
numeric addition is commutative; composing a plot is not
necessarily commutative. So, despite the syntactic similar-
ity, statements that compose a plot using reassignment (as
above) do not obey the same rules as reassignments for a
running total. But, it turns out the statements above don’t
obey the same rules of string concatenation either. Within
this code block, statements that look alike perform opera-
tions of a di↵erent nature. While some expressions (lines 2
and 3) compose visual layers onto a plot, others (lines 4 and
5) modify features of the plot, like the x and y scales.

Given these motivating examples, it seems sensible to
think there’s utility in a programmer having di↵erent con-
ceptual metaphors available to think about and work with
code.

We believe that working from conceptual metaphors—in
our example, attacking a debugging problem by exploiting
animation and drawing from physics knowledge—achieves
the same kind of transformation Hutchins describes.

Example 2 shows that across languages, programmers might
have to deploy di↵erent conceptual metaphors to reason
about statements in a locally-consistent way. Knowing that
plots in ggplot2 can be composed layer-by-layer with reas-
signment is crucial if you’re trying to write or understand
code that creates statistical graphics. But, we would argue
that thinking about 2 = 2+2 as “compose new layer onto
plot” can and does appeal to di↵erent kinds of knowledge
when compared to thinking about 2 = 2 + 2 as “include
this addend in the sum,” which itself can and does appeal
to di↵erent kinds of concepts when compared to thinking
about 2 = 2+ 2 as “increment the counter.”

Stepping back, we can build the following argument

1. Programming can be helped by applying conceptual
models to code, particularly when relevant domain-
knowledge structures can advantageously transform a
problem (example 1)

2. But, conceptual models don’t work all the time for
all statements. Because languages are designed di↵er-
ently, the same syntax can actually correspond to very
di↵erent operations in code (example 2). And, that’s
true both within and across languages (example 3).

3. Consequently, it makes less sense to treat conceptual
models as right or wrong, and more sense to treat them
as di↵erentially advantageous for thinking about what
a piece of code does. (Thinking a“+”implies numerical
addition isn’t globally wrong in JavaScript, but it won’t
explain why 1 + “1” yields “11” as a result.)

4. It seems plausible that successful programmers, when
reasoning about or writing code, are able to dynami-
cally access or deploy conceptual models that are ad-
vantageous given the context (language, syntax, sur-
rounding code). Certainly prior research demonstrates
novices and experts both have resources for creating,
evaluating, and adapting their own conceptual metaphors
to suit the context of the problem [21, 27, 28]

5. To model how programmers think with conceptual mod-
els, a suitable framework should be able to account for
the dynamic, context-sensitive deployment of concep-
tual knowledge.

6. To model how programmers develop expertise, a suit-
able framework should be able to describe higher-order
phenomena. Such phenomena include explaining how
programmers come to have conceptual models or gen-
erate new ones, why they decide to deploy them, and
how programmers consider which conceptual model
(i.e., which way to think about code) is appropriate.

Taken together, these assertions propose criteria for how
we might strive to model cognition in programming. Our
modeling frameworks should be context-dependent, dynamic,
and capable of explaining where conceptual models come
from. They should also be able to account for phenomena
that are not themselves conceptual, including what directs
the use of certain kinds of conceptual knowledge. In the
learning sciences, such models already exist and have proven
useful and productive for thinking about thinking.

3.3 Manifold models of cognition can explain
context-dependence and the growth of ex-
pertise

In 1993, a pair of articles in the learning sciences staked a
strong claim for viewing knowledge as a network of pieces,
isolated enough to be locally triggered but trainable enough
to fire in larger concerted patterns [7, 42]. Informed in part
by agent-based accounts of cognition [32] and complex sys-
tems models [8], the central tenets of an“in-pieces”approach
hold that knowledge is emergent from interacting primi-
tives, rather than unitary and monolithic. An example from
Smith, diSessa, and Roschelle helps illustrate the point.

The authors show that we might think of a rubber band
as a di↵erent conceptual entity depending on context. In
several di↵erent situations—wrapped around a newspaper,
suspending a bob weight, pulled taut as a string, spun to
store energy in a toy plane propeller—we intuitively think
about the rubber band’s physical behavior di↵erently: one as
a negligible part of the newspaper’s point mass, two di↵erent
kinds of harmonic pendulums, and finally a torsional spring.
Those di↵erences in intuitive thinking reflect the contextual
dependency of what we know about the physical world:

In each of the rubberband examples, various pieces
of intuitive physical knowledge describe the mech-
anism at work: the rubber band binds the news-
paper, grips the jar lid, and acts a source of
springiness for the bobbing object. Although a
mapping cannot be made from the rubberband
to scientific entities, it is quite easy to map these
qualitatively distinct physical processes to scien-
tific entities and laws. For example, instances of
binding almost always map to a practically rigid
body. Likewise, gripping maps to friction forces,
and springiness maps to Hooke’s law. This sug-
gests that applicability can depend directly on
our intuitive knowledge—knowledge that exists
prior to any formal scientific training [42].

The in-pieces approach to modeling cognition has been
used, among other things, to explain how experts reason
about fractions and decimals [42], how students reason about
forces in physics [9, 7, 17, 41], how students construct and
evaluate algebraic representations of physical situations [27,
28], and how knowledge transfers across contexts [20, 47].
Because its starting assumption is that knowledge is frag-
mented, knowledge-in-pieces can account for wide variations
of how people—particularly novices—use knowledge on a
moment-to-moment basis. In other words, because it as-
sumes knowledge is local, it can still explain the kinds of
globally-inconsistent ways people might reason about phys-
ical situations [7]. As a framework, an in-pieces approach
ultimately argues that models of concept replacement and
good/bad criteria for knowledge should be supplanted by a
learning model of alignment/refinement of prior knowledge
and the consideration of knowledge as productive/unproduc-
tive.

Hammer and colleagues have worked to extend the in-
pieces approach to explain how students’ epistemological
activity—how they orient toward knowledge and knowing
in a context [20, 18, 10]. Specifically, those authors use two
core theoretical constructs to explain students’ stances to-
ward knowledge and knowing:

• Epistemological Resources [20] are the epistemological
equivalent of diSessa’s phenomenological primitives (p-
prims) [7]. Resources, the authors propose, are the
atomic units involved in how people cognize about
the source of knowledge, the nature of knowledge, and
epistemological activities [19, 31].

• Epistemological Frames are the emergent result of sub-
sets of resources acting in concert. Drawing from both
Go↵man’s sociological notion of frame as structures
of expectations [16] and subsequent work on framing
in discourse [44], epistemological frames are a partici-
pant’s local answer to the question “what is it [specif-
ically, what knowledge activity] that’s going on here”
[16].

Resources and frames can interact in activity settings to
produce larger-scale patterns called “epistemological coher-
ences” [38] where evidence from data suggests that a network
of discrete cognitive units can nonetheless give rise to stable
cognition.

An example helps ground this in-pieces approach to episte-
mology. Russ, Co↵ey, Hammer, and Hutchison, describe the

situation where an elementary student reasons about why an
empty juice box collapses when you suck on the straw [39].
One student gives what the authors deem to be an excellent
mechanistic account of why the juice box collapses:

In explaining the phenomenon, Erin focuses on
the role played by the air located inside the juice
box. She describes the air inside as actively push-
ing out on all sides of the box holding them out
and flat. When that air is removed from the box
(by sucking it out through the straw), there is no
longer anything pushing from the inside to hold
the box out, so the sides cave in. We call this
description of the phenomenon the âĂIJinside-
pusherâĂİ model because of its focus on what
happens inside the box. [39]

But, as the teacher seems to steer the discussion toward
canonically correct vocabulary—in this case, “pressure”—
and Erin clearly pulls back from her mechanistic reason-
ing, seems much more di�dent, and claims that pressure
is hard to explain. That example highlights the discon-
nect between doing science as knowing vocabulary and do-
ing science as reasoning mechanistically. Moreover, it strik-
ingly highlights that a student who by all accounts pro-
duced an excellent explanation of how pressure works was
left nonetheless with the impression that pressure was hard
to explain. In other words, in that moment what counted
as knowing was using the word pressure. Erin’s mechanistic
explanation—beautiful and complex as it was—didn’t use
that magic word, and in a possible e↵ort to push the class
toward canonical behavior, the teacher shut down Erin’s rea-
soning.

4. CONCLUSION
In this article, we have argued for expanding our cogni-

tive models beyond misconceptions in computing education
research. We

1. Reanalyzed historical data through the perspective of
productive student knowledge, building evidence in clas-
sic computing education research that we can recover
novice’s productive knowledge without simply labeling
it as non-canonical or wrong

2. Explored several examples that reveal both the adap-
tive nature of computing expertise and the power of
non-misconception frameworks—namely distributed cog-
nition and knowledge-in-pieces/symbolic forms.

3. Stressed that models to what counts as knowledge and
knowing have both historical success in other fields and
obvious implications for computing education

Ultimately, the modeling of cognition only or primarily as
a set of privileged, canonical knowledge and how students do
or don’t have it is eclipsing the other productive knowledge
and ways of knowing that students do have. While useful,
misconceptions can only take us so far in our e↵orts to un-
derstand and improve learning in computing education.

4.1 Acknowledgments
Blinded for review.

References
[1] Bayman, P., and Mayer, R. E. A diagnosis of begin-

ning programmers’ misconceptions of BASIC program-
ming statements. Communications of the ACM 26, 9
(1983), 677–679.

[2] Bonar, J., and Soloway, E. Uncovering principles
of novice programming. Proceedings of the 10th ACM
SIGACT-SIGPLAN symposium on Principles of pro-
gramming languages (1983), 10–13. ACM ID: 567069.

[3] Bonar, J., and Soloway, E. Preprogramming
Knowledge: A Major Source of Misconceptions in
Novice Programmers. Human-Computer Interaction 1,
2 (June 1985), 133.

[4] Clancy, M. Misconceptions and Attitudes that In-
terfere with Learning to Program. In Computer Sci-
ence Education Research, S. Fincher and M. Petre, Eds.
RoutledgeFalmer, London, UK, 2004, pp. 85–100.

[5] Danielsiek, H., Paul, W., and Vahrenhold, J. De-
tecting and Understanding Students’ Misconceptions
Related to Algorithms and Data Structures. In Proceed-
ings of the 43rd ACM Technical Symposium on Com-
puter Science Education (New York, NY, USA, 2012),
SIGCSE ’12, ACM, pp. 21–26.

[6] diSessa, A. A. Models of Computation. In User
centered system design: new perspectives on human-
computer interaction, D. A. Norman and S. W. Draper,
Eds. L. Erlbaum Associates, Hillsdale, N.J, 1986,
pp. 201–218.

[7] diSessa, A. A. Toward an Epistemology of Physics.
Cognition and Instruction 10, 2/3 (1993), 105–225.
ArticleType: primary article / Full publication date:
1993 / Copyright c� 1993 Lawrence Erlbaum Associates
(Taylor & Francis Group).

[8] diSessa, A. A. Why ”Conceptual Ecology” is a good
idea. In Reconsidering conceptual change: issues in the-
ory and practice, M. Limón and L. Mason, Eds. Kluwer
Academic Publishers, Dordrecht ; Boston, 2002, pp. 29–
60.

[9] diSessa, A. A., and Sherin, B. L. What changes in
conceptual change? International Journal of Science
Education 20, 10 (1998), 1155–1191.

[10] Elby, A., and Hammer, D. On the substance of a
sophisticated epistemology. Science Education 85, 5
(2001), 554–567.

[11] Fleury, A. E. Parameter passing: the rules the stu-
dents construct. In Proceedings of the twenty-second
SIGCSE technical symposium on Computer science ed-
ucation (New York, NY, USA, 1991), SIGCSE ’91,
ACM, pp. 283–286.

[12] Fleury, A. E. Student Beliefs about Pascal Program-
ming. Journal of Educational Computing Research 9, 3
(Jan. 1993), 355–371.

[13] Fleury, A. E. Programming in Java: student-
constructed rules. SIGCSE Bull. 32, 1 (Mar. 2000),
197–201.

[14] Gal-Ezer, J., and Trakhtenbrot, M. Identifica-
tion and addressing reduction-related misconceptions.
Computer Science Education 0, 0 (Apr. 2016), 1–15.

[15] Gal-Ezer, J., and Zur, E. The e�ciency of
algorithms–misconceptions. Computers & Education
42, 3 (2004), 215–226.

[16] Goffman, E. Frame Analysis: An Essay on the Or-
ganization of Experience. Harper & Row, New York,
1974.

[17] Hammer, D. Misconceptions or P-Prims: How May
Alternative Perspectives of Cognitive Structure Influ-
ence Instructional Perceptions and Intentions? Journal
of the Learning Sciences 5, 2 (1996), 97–127.

[18] Hammer, D., and Elby, A. On the form of a personal
epistemology. In Personal epistemology: The psychol-
ogy of beliefs about knowledge and knowing, B. K. Hofer
and P. R. Pintrich, Eds. L. Erlbaum Associates, Mah-
wah, N.J, 2002, pp. 169–190.

[19] Hammer, D., and Elby, A. Tapping epistemologi-
cal resources for learning physics. The Journal of the
Learning Sciences 12, 1 (2003), 53–90.

[20] Hammer, D., Elby, A., Scherr, R. E., and Redish,
E. F. Resources, framing, and transfer. In Transfer of
learning from a modern multidisciplinary perspective,
J. P. Mestre, Ed., Current perspectives on cognition,
learning, and instruction. IAP, Greenwich, CT, 2005.

[21] Hammer, D., Gupta, A., and Redish, E. F. On
Static and Dynamic Intuitive Ontologies. Journal of
the Learning Sciences 20, 1 (2011), 163–168.

[22] Herman, G. L., Kaczmarczyk, L., Loui, M. C., and
Zilles, C. Proof by incomplete enumeration and other
logical misconceptions. Proceeding of the Fourth inter-
national Workshop on Computing Education Research
(2008), 59–70. ACM ID: 1404527.

[23] Holland, S., Griffiths, R., and Woodman, M.
Avoiding object misconceptions. In Proceedings of the
twenty-eighth SIGCSE technical symposium on Com-
puter science education (New York, NY, USA, 1997),
SIGCSE ’97, ACM, pp. 131–134.

[24] Hutchins, E. Cognition in the Wild. MIT Press, Cam-
bridge, Mass, 1995. 381 pages.

[25] Hutchins, E. How a cockpit remembers its speeds.
Cognitive Science 19, 3 (1995), 265–288.

[26] Hutchins, E. Distributed Cognition. Interna-
tional Encyclopedia of the Social & Behavioral Sciences
(2000).

[27] Izsák, A. ”WeWant a Statement That Is Always True”:
Criteria for Good Algebraic Representations and the
Development of Modeling Knowledge. Journal for Re-
search in Mathematics Education 34, 3 (May 2003),
191–227. ArticleType: primary article / Full publi-
cation date: May, 2003 / Copyright c� 2003 National
Council of Teachers of Mathematics.

[28] Izsák, A. Students’ Coordination of Knowledge When
Learning to Model Physical Situations. Cognition &
Instruction 22, 1 (Mar. 2004), 81–128.

[29] Kaczmarczyk, L., Petrick, E. R., East, J. P., and
Herman, G. L. Identifying student misconceptions of
programming. Proceedings of the 41st ACM technical
symposium on Computer science education (2010), 107–
111. ACM ID: 1734299.

[30] Kolikant, Y. B.-D., and Mussai, M. “So my pro-
gram doesn’t run!”Definition, origins, and practical ex-
pressions of students’ (mis)conceptions of correctness.
Computer Science Education 18, 2 (2008), 135.

[31] Louca, L., Elby, A., Hammer, D., and Kagey, T.
Epistemological Resources: Applying a New Epistemo-
logical Framework to Science Instruction. Educational
Psychologist 39, 1 (2004), 57–68.

[32] Minsky, M. L. The Society of Mind. Simon and Schus-
ter, New York, 1986.

[33] Patitsas, E., Craig, M., and Easterbrook, S. On
the Countably Many Misconceptions About #Hashta-
bles (Abstract Only). In Proceeding of the 44th ACM
Technical Symposium on Computer Science Education
(New York, NY, USA, 2013), SIGCSE ’13, ACM,
pp. 739–739.

[34] Paul, W., and Vahrenhold, J. Hunting High and
Low: Instruments to Detect Misconceptions Related to
Algorithms and Data Structures. In Proceeding of the
44th ACM Technical Symposium on Computer Science
Education (New York, NY, USA, 2013), SIGCSE ’13,
ACM, pp. 29–34.

[35] Pea, R. D. Language-independent conceptual” bugs”
in novice programming. Journal of Educational Com-
puting Research 2, 1 (1986), 25–36.

[36] Pea, R. D., and Kurland, D. M. On the cognitive
prerequisites of leraning computer programming. Tech.
Rep. Technical Report No. 18, National Institute of Ed-
ucation, 1983.

[37] Pea, R. D., Soloway, E., and Spohrer, J. The
Buggy Path to the Development of Programming Ex-
pertise. Focus on Learning Problems in Mathematics 9,
1 (1987), 5–30.

[38] Rosenberg, S., Hammer, D., and Phelan, J. Mul-
tiple Epistemological Coherences in an Eighth-Grade
Discussion of the Rock Cycle. Journal of the Learning
Sciences 15, 2 (2006), 261–292.

[39] Russ, R. S., Coffey, J. E., Hammer, D., and
Hutchison, P. Making classroom assessment more
accountable to scientific reasoning: A case for attend-
ing to mechanistic thinking. Science Education 93, 5
(2008), 875–891.

[40] Seppälä, O., Malmi, L., and Korhonen, A. Obser-
vations on student misconceptions—A case study of the
Build – Heap Algorithm. Computer Science Education
16, 3 (2006), 241–255.

[41] Sherin, B. L. How students understand physics equa-
tions. Cognition and Instruction 19, 4 (2001), 479–541.

[42] Smith, J. P., diSessa, A. A., and Roschelle, J.
Misconceptions Reconceived: A Constructivist Anal-
ysis of Knowledge in Transition. The Journal of the
Learning Sciences 3, 2 (1993 - 1994), 115–163.

[43] Stefik, A., Siebert, S., Slattery, K., and Stefik,
M. Toward Intuitive Programming Languages. In 2011
IEEE 19th International Conference on Program Com-
prehension (ICPC) (2011), pp. 213–214.

[44] Tannen, D., Ed. Framing in Discourse. Oxford Uni-
versity Press, New York, 1993.

[45] Trakhtenbrot, M. Students Misconceptions in Anal-
ysis of Algorithmic and Computational Complexity of
Problems. In Proceedings of the 18th ACM Confer-
ence on Innovation and Technology in Computer Sci-
ence Education (New York, NY, USA, 2013), ITiCSE
’13, ACM, pp. 353–354.

[46] VanLehn, K. Mind Bugs: The Origins of Procedural
Misconceptions. Learning, development, and concep-
tual change. MIT Press, Cambridge, Mass, 1990.

[47] Wagner, J. F. Transfer in Pieces. Cognition & In-
struction 24, 1 (Mar. 2006), 1–71.

6/29/2016 ICER 2016 Submission 116

https://www.easychair.org/conferences/submission.cgi?a=11422828;submission=2759288 1/4

Help Log out
ICER 2016 (author)

My Submissions ICER 2016 News EasyChair

ICER 2016 Submission 116

Submission information updates are disabled.
For all questions related to processing your submission you should contact the
conference organizers. Click here to see information about this conference.
All reviews sent to you can be found at the bottom of this page.

Paper 116
Title: Expanding Models of Cognition within Computing Education Research

Paper

Track: Research papers

Author keywords:

theory
design
cognition
epistemology

EasyChair keyphrases:

computer science education (174), programming language (110), computing education
research (95), student misconception (90), conceptual model (80), learning science (70),
computing education (70), productive knowledge (70), symbolic form (60), canonical
knowledge (50), conceptual metaphor (50), misconception research (50), symbol template
(50), conceptual schema (50), airspeed indicator scale (47), science education (40), approach
speed (40), non canonical (40), base change (40), distributed cognition (40), student non
(40), assignment statement (40), knowing in computing learning (40)

Abstract:

This paper aims to expand our sense of what's possible in modeling cognition within
computing education research. We argue that research approaches that privilege canonical
knowledge do so at the expense of other productive knowledge and ways of knowing that
students have. We explore applicable cognitive theory by showing how distributed cognition
and symbolic forms can be a powerful framework for analysis in CSEd. Finally, we conclude
with an exploration of epistemological concerns, arguing that a fundamental concern for our
research community should be paying attention to what counts as knowledge and knowing in
computing learning environments.

Time: Apr 16, 06:03 GMT

Authors
first

name
last

name email country organization Web
page corresponding?

Brian Danielak briandaniela.k+easychairconference@gmail.com United
States

Michigan
State
University

✔

William Doane wdoane@ida.org United
States

Institute for
Defense
Analyses

Reviews

Review 2
Overall evaluation: 4: (Borderline, lean to accept)

Summary of paper: Authors argue against misconception‑based models of cognition in CSEd research, suggesting
that using other models would be more useful.

Discussion of related
work: 3: (some references missing, or relationship to submission not clearly described)

Update authors

https://www.easychair.org/
https://www.easychair.org/help/article.cgi?track=147842;a=11422828
https://www.easychair.org/account/signout.cgi?track=147842;a=11422828
https://www.easychair.org/conferences/conference_info.cgi?track=147842;a=11422828
https://www.easychair.org/conferences/submission_download.cgi?a=11422828;track=147842;file=51799;submission=2759288
https://www.easychair.org/conferences/author_update.cgi?paper=2759288;track=147842;a=11422828

6/29/2016 ICER 2016 Submission 116

https://www.easychair.org/conferences/submission.cgi?a=11422828;submission=2759288 2/4

Theoretical basis for
the paper:

5: (clear and strong theoretical basis, well documented with citations and clearly applied in the
research)

Use of theory: Using Smith et al and Hammer et al provides good theoretical justification for their view on
misconceptions ‑‑ appropriate cites.

Research
methodology: 3: (research approach and methods well‑suited for the research questions/hypotheses)

Exposition of
research methods: 1: (no empirical data collected)

Discussion of results
and conclusions: 4: (good interpretation of findings; limitations considered)

Methodology and
empirical basis:

This is not a typical empirical ICER paper ‑‑ it argues a position (anti‑misconception) rather
effectively based on theory (primarily Smith et al) and a reinterpretation of Kaczmarczyk et al
and Pea and Kurland. Its examples in 3.1 and 3.2 are quite compelling.

The main problem with this paper is that it overstates the role of misconception‑based
research in CSEd. For example: “a preponderance of research in computing education (CSEd)
has modeled and continues to model cognition through misconceptions”; and “most
cognitively‑focused educational research in computer science treats students as having varied
degrees of deficiency with respect to canonical knowledge”. Where is the evidence for this?
Certainly CSEd misconception papers are still being published, but relatively few involve
misconceptions. Moreover, there are quite a few CSEd papers published that (at least
implicitly) take an anti‑misconception position (some references given in the summary below).

Contribution and
relevance to the
international
computing education
research field:

4: (a clear contribution to the field)

Significance of
contributions/results
:

I think this paper is a clear contribution; it makes a strong argument that misconceptions
research has underlying flaws that suggest better approaches. I think it weakens its case by 1)
overstating the importance of misconceptions work in CSEd, and 2) not mentioning threads of
CSEd work that take alternative epistemological positions, for example the phenomenographic
work on learning to program and the commonsense computing work (citations for these
below).

Writing and
expression: 4: (well written and expressed)

Suggestions
regarding the writing
or other comments:

This paper effectively shows the flaws with some of the misconceptions work in CSEd. It
misstates the dominance of misconceptions research in CSEd however. It would improve the
paper to include examples of work that takes alternative views of student conceptions; this
would not weaken the author’s conclusions about misconceptions, and would provide the
readers with some models of how to use conceptions differently.

References:

Phenomenography:

Booth, S. A. Learning to Program. A phenomenographic perspective. Number 89 in Güteborg
Studies in Educational Science. Acta Universitatis Gothoburgensis, Göteborg, Sweden, 1992

Eckerdal, A. and Thune, M. 2005. Novice Java programmers' conceptions of "object" and
"class", and variation theory. In Proceedings of ITiCSE '05. 89‑93.

Commonsense Computing:

Simon et al., 2006. Commonsense computing: what students know before we teach (episode
1: sorting). In Proceedings of the second international workshop on Computing education
research (ICER '06). 29‑40.

Lewandowski et al, 2010, Commonsense understanding of concurrency: computing students
and concert tickets, Communications of the ACM, v.53 n.7, July 2010

6/29/2016 ICER 2016 Submission 116

https://www.easychair.org/conferences/submission.cgi?a=11422828;submission=2759288 3/4

Review 3
Overall evaluation: 2: (I would argue to reject this paper)

Summary of paper:
The paper is a position statement on using distributed cognition theory to analyze CS learning
experiences. They argue that this lens is more useful than focusing on misconceptions, which
has been a prevalent line of research in the field.

Discussion of related
work: 3: (some references missing, or relationship to submission not clearly described)

Theoretical basis for
the paper: 3: (there is a theory there, but its relevance to the research is vague)

Use of theory:

The paper presents an argument for examining student learning from a point of view other
than misconceptions. The organization and exposition of the paper make it difficult to infer
the grounding of the work. Much of the paper is reinterpretation of previous work using a new
lens, presumably without access to primary data sources. A similar argument about
distributed cognition was presented last year, and provides another example of how to
present this work.

Using Distributed Cognition Theory to Analyze Collaborative Computer Science Learning
Elise Deitrick, R. Benjamin Shapiro, Matthew P. Ahrens, Rebecca Fiebrink, Paul D. Lehrman,
Saad Farooq
August 2015 ICER '15: Proceedings of the eleventh annual International Conference on
International Computing Education Research

Other references that seem to discuss similar matters are:

Epistemological Pluralism and the Revaluation of the Concrete
Sherry Turkle and Seymour Papert
Versions of this article appeared in the Journal of Mathematical Behavior, Vol. 11, No.1, in
March, 1992, pp. 3‑33; Constructionism, I. Harel & S. Papert, Eds. (Ablex Publishing
Corporation, 1991), pp.161‑191; and SIGNS: Journal of Women in Culture and Society,
Autumn 1990, Vol. 16 (1).

Research
methodology: 2: (questionable choice of research approach and methods)

Exposition of
research methods: 1: (no empirical data collected)

Discussion of results
and conclusions: 2: (questionable interpretation of findings)

Methodology and
empirical basis:

This paper seems to have a confused message ‑ one arguing about privileged ways of
knowing and where remedies should be applied when problems are detected. And the other
arguing for distributed cognition as a means to achieve this end.

The arguments about privilege are not well supported and little reference is made to this field
of research. The arguments about distributed cognition rely heavily on excerpted results from
previous studies, reinterpreted with a distributed cognition or symbolic forms lens. In
research, there is room for interpretation. But the work would be significantly improved with
some primary data sources on which to do the analysis ‑ perhaps contrasting a
"misconception" based interpretation with that of distributed cognition. The authors seem to
posit that all research done in misconceptions is grounded in behaviorist/empiricist views of
knowledge and learning. It can certainly be argued that much of this work is actually rooted in
the cognitive/rationalist view of learning. Clearly a situative view of learning, such as
distributed cognition, provides a different perspective but it is not clear that the original work
is a pejorative as presented.

Contribution and
relevance to the
international
computing education
research field:

2: (no obvious contribution, but the promise of future value)

Significance of
contributions/results
:

The arguments for epistemological pluralism (Turkle & Papert) are the strongest aspect of this
research. However, the discussion is muddled and does not make clear what additional
contribution to the body of knowledge this provides. Perhaps using a situative learning theory
to analyze student learning, could provide insights to researchers about how to address

6/29/2016 ICER 2016 Submission 116

https://www.easychair.org/conferences/submission.cgi?a=11422828;submission=2759288 4/4

student difficulties. But the paper stopped short of that goal.
Writing and
expression: 2: (very poorly written; unlikely that it can be improved enough)

Suggestions
regarding the writing
or other comments:

Review 1
Overall evaluation: 2: (I would argue to reject this paper)

Summary of paper:

This paper presents a philosophical argument against using misconception modeling as a way
to understand how students learn to program. There was a shift from early research in
programming to now in which people were still learning a lot about the problem domain of
programming from the mistakes that people made when programming, vs. now when we
understand the domain is difficult and now ascribe mistakes to the cognitive abilities and
skills of the programmers.

Discussion of related
work:

4: (covers key related work; its relationship to submission is described, but could be extended
further)

Theoretical basis for
the paper:

4: (theoretical basis obvious, with some citations and argument for how it is applied in the
research)

Use of theory: The paper contains plenty of citations pointing back to the original studies of programming
and programming languages.

Research
methodology: 2: (questionable choice of research approach and methods)

Exposition of
research methods: 1: (no empirical data collected)

Discussion of results
and conclusions: 3: (plausible interpretation of findings)

Methodology and
empirical basis:

The authors make their points through repeated code examples from prior research along
with the contemporary interpretations of student cognition.

Contribution and
relevance to the
international
computing education
research field:

2: (no obvious contribution, but the promise of future value)

Significance of
contributions/results
:

The paper is presented as a philosophical argument with a few examples drawn from the
literature to prove the authors' points. I find it difficult to follow the authors' arguments in this
narrative form.

Writing and
expression: 2: (very poorly written; unlikely that it can be improved enough)

Suggestions
regarding the writing
or other comments:

Unfortunately for me, the paper reads more like a long stream of consciousness, or perhaps a
lecture format, in which the authors are speaking their arguments out loud. This makes it very
difficult for me to follow in the paper format. I believe the authors could improve the work by
shifting to a more top‑down piecemeal style of writing in which each argument stands alone.
The end could tie all the pieces together and present the main objective.

Copyright © 2002–2016 EasyChair

6/29/16, 3:45 PMSample review process | ICER Conference

Page 1 of 4http://icer.hosting.acm.org/general-info/sample-review-process/

Sample review process

The template below is provided to help guide reviewers and

authors during the reviewing process. You may also find it helpful

to review the tips for authors and reviewers.

NOTE: Actual reviews should be completed using the EasyChair

system. Reviewers will receive a link via email when papers have

been assigned.

Review Template

1. Overall evaluation

6: I strongly support accepting this paper

5: I would argue for accepting this paper

4: Borderline, lean to accept

3: Borderline, lean to reject

2: I would argue to reject this paper

1: I strongly recommend rejecting this paper

2. Reviewer’s confidence

3: (high)

2: (medium)

1: (low)

3. Summary of Paper (*)

Provide a 1-2 sentence summary of the work in your own

words. We use this to verify that reviews are entered for the

correct submission.

4. Discussion of related work

5: all relevant work discussed and cited, and

Search

General Info ���� For Authors ���� For Attendees ����

For Reviewers ���� All ICER Conferences ����

��

http://icer.hosting.acm.org/general-info/sample-review-process/tips.html
http://icer.hosting.acm.org/
http://icer.hosting.acm.org/general-info/sample-review-process/#
http://icer.hosting.acm.org/general-info/sample-review-process/#
http://icer.hosting.acm.org/general-info/sample-review-process/#
http://icer.hosting.acm.org/general-info/sample-review-process/#
http://icer.hosting.acm.org/general-info/sample-review-process/#

6/29/16, 3 !45 PMSample review process | ICER Conference

Page 2 of 4http://icer.hosting.acm.org/general-info/sample-review-process/

relationship to submission clearly and thoroughly

described

4: covers key related work; its relationship to

submission is described, but could be extended

further

3: some references missing, or relationship to

submission not clearly described

2: several important or key reference(s) missing, and

relationship of references to submission not

apparent

1: no discussion of related work

5a. Theoretical basis for the paper

5: clear and strong theoretical basis, well

documented with citations and clearly applied in the

research

4: theoretical basis obvious, with some citations and

argument for how it is applied in the research

3: there is a theory there, but its relevance to the

research is vague

2: maybe thereÕs a theory there, but it is vague and

has no clear relevance to the research

1: no obvious theory being applied

5b. Use of Theory (*)

Discuss the appropriateness and quality of the theoretical

framework for addressing the explored research topic.

6a. Research methodology

3: research approach and methods well-suited for

the research questions/hypotheses

2: questionable choice of research approach and

methods

1: research approach and methods inappropriate for

research objectives

6b. Exposition of research methods

6/29/16, 3 !45 PMSample review process | ICER Conference

Page 3 of 4http://icer.hosting.acm.org/general-info/sample-review-process/

4: data collected and analyzed; methods clear and

thoroughly described.

3: data collected and analyzed, but some aspects

unclearly described.

2: data collected and analyzed, but unclear or

inadequate description.

1: no empirical data collected

6c. Discussion of results and conclusions

5: incisive interpretation of findings and limitations

4: good interpretation of findings; limitations

considered

3: plausible interpretation of findings

2: questionable interpretation of findings

1: unjustifiable interpretation of findings

6d. Methodology and Empirical Basis (*)

Discuss the appropriateness and quality of the chosen

methodology. Evaluate the way authors have applied the

research, interpreted their findings and drawn conclusions.

Comment on whether the findings have been examined in the

context of related work and the limitations of the research.

7a. Contribution and its relevance to the international

computing education research field

5: a major and significant contribution to the field

that explicitly presents results in a manner directly

applicable to international research contexts

4: a clear contribution to the field

3: minor contribution or contribution is bound to a

local context, perhaps with the promise of more to

come

2: no obvious contribution, but the promise of future

value

1: contributes little or nothing to computing

6/29/16, 3:45 PMSample review process | ICER Conference

Page 4 of 4http://icer.hosting.acm.org/general-info/sample-review-process/

education research

7b. Significance of Contributions/Results (*)

Make a case for the importance of this finding for our

community (or indicate your views if you believe it not so

important). We hopefully have a number of high-quality

papers, and your input on what is important for our

community matters.

8a. Writing and expression

5: exemplary writing that enhances the quality of the

paper

4: well written and expressed

3: not well written, but could probably be made

acceptable

2: very poorly written; unlikely that it can be

improved enough

1: extremely poorly written; hard to understand

8b. Suggestions regarding the writing or other comments

If you would like to draw particular aspects of the writing to

the authors’ attention and/or make any further

recommendations, please do so here. If you have any further

references to recommend, please add them here.

Designed by Elegant Themes | Powered by WordPress

http://www.sigcse.org/
http://www.acm.org/
http://www.elegantthemes.com/
http://www.wordpress.org/

	Abstract
	Introduction
	Misconceptions research in computing education tends to ignore students' productive knowledge

	Core Arguments
	Not all cognitive programming bugs imply a problem with the student
	Examples motivate the need for contextual-sensitivity in modeling programming cognition
	Example 1: Thinking With Kinematics Can Transform a Debugging Problem
	Example 2: The Plus Sign Means Lots of Things
	Example 3: The Same Symbol Template Within The Same Language Can Still Mean Different Things

	Manifold models of cognition can explain context-dependence and the growth of expertise

	Conclusion
	Acknowledgments

